Directed Surface Reconstruction of Fe Modified Co2VO4 Spinel Oxides for Water Oxidation Catalysts Experiencing Self-Terminating Surface Deterioration
© 2024 Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 31 vom: 09. Aug., Seite e2401818 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article CV activation cation leaching oxygen evolution reaction surface reconstruction |
Zusammenfassung: | © 2024 Wiley‐VCH GmbH. Affordable highly efficient catalysts for electrochemical oxygen evolution reaction (OER) play pivotal roles in green hydrogen production via water electrolysis. Regarding the non-noble metal-based electrocatalysts, considerable efforts are made to decipher the cation leaching and surface reconstruction; yet, little attention is focused on correlating them with catalytical activity and stability. Herein, in situ reconstruction of Fe-modified Co2VO4 precursor catalyst to form a highly active (Fe,V)-doped CoOOH phase for OER is reported, during which partial leaching of V accelerates the surface reconstruction and the V reserved in the reconstructed CoOOH layer in the form of alkali-resistant V2O3 serves for dynamic charge compensation and prevention of excessive loss of lattice oxygen and Co dissolution. Fe substitution facilitates Co pre-oxidation and endows the catalysts with structural flexibility by elevating O 2p band level; hence, encouraging participation of lattice oxygen in OER. The optimized Co2Fe0.25V0.75O4 electrode can afford current densities of 10 and 500 mA cm-2 at low overpotentials of 205 and 320 mV, respectively, with satisfactory stability over 600 h. By coupling with Pt/C cathode, the assembled alkaline electrolyzer can deliver 500 mA cm-2 at a low cell voltage of 1.798 V, better than that of commercial RuO2 (+) || Pt/C (-) |
---|---|
Beschreibung: | Date Revised 01.08.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202401818 |