Viewpoint Recommendation for Point Cloud Labeling through Interaction Cost Modeling

Semantic segmentation of 3D point clouds is important for many applications, such as autonomous driving. To train semantic segmentation models, labeled point cloud segmentation datasets are essential. Meanwhile, point cloud labeling is time-consuming for annotators, which typically involves tuning t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 22. März
1. Verfasser: Zhang, Yu (VerfasserIn)
Weitere Verfasser: Zhao, Xinyi, Bi, Chongke, Chen, Siming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370072979
003 DE-627
005 20240325235519.0
007 cr uuu---uuuuu
008 240323s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3376951  |2 doi 
028 5 2 |a pubmed24n1347.xml 
035 |a (DE-627)NLM370072979 
035 |a (NLM)38517726 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yu  |e verfasserin  |4 aut 
245 1 0 |a Viewpoint Recommendation for Point Cloud Labeling through Interaction Cost Modeling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Semantic segmentation of 3D point clouds is important for many applications, such as autonomous driving. To train semantic segmentation models, labeled point cloud segmentation datasets are essential. Meanwhile, point cloud labeling is time-consuming for annotators, which typically involves tuning the camera viewpoint and selecting points with a lasso tool. To reduce the time cost of point cloud labeling, we propose a viewpoint recommendation approach to reduce annotators' labeling time costs. We adapt Fitts' law to model the time cost of lasso selection in point clouds. Using the modeled time cost, the viewpoint that minimizes the lasso selection time cost is recommended to the annotator. We build a data labeling system for semantic segmentation of 3D point clouds that integrates our viewpoint recommendation approach. The system enables users to navigate to recommended viewpoints for efficient annotation. Through a user study, we observed that our approach effectively reduced the data labeling time cost. We also qualitatively compare our approach with previous viewpoint selection approaches on different datasets 
650 4 |a Journal Article 
700 1 |a Zhao, Xinyi  |e verfasserin  |4 aut 
700 1 |a Bi, Chongke  |e verfasserin  |4 aut 
700 1 |a Chen, Siming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 22. März  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:22  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3376951  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 22  |c 03