Double Discrete Cosine Transform-Oriented Multi-View Subspace Clustering

Low-rank tensor representation with the tensor nuclear norm has been rising in popularity in multi-view subspace clustering (MVSC), in which the tensor nuclear norm is commonly implemented using discrete Fourier transform (DFT). Unfortunately, existing DFT-oriented MVSC methods may provide unsatisfa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 2491-2501
1. Verfasser: Chen, Yongyong (VerfasserIn)
Weitere Verfasser: Wang, Shuqin, Zhao, Yin-Ping, Chen, C L Philip
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM370072871
003 DE-627
005 20240330001404.0
007 cr uuu---uuuuu
008 240323s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3378471  |2 doi 
028 5 2 |a pubmed24n1355.xml 
035 |a (DE-627)NLM370072871 
035 |a (NLM)38517713 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Yongyong  |e verfasserin  |4 aut 
245 1 0 |a Double Discrete Cosine Transform-Oriented Multi-View Subspace Clustering 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low-rank tensor representation with the tensor nuclear norm has been rising in popularity in multi-view subspace clustering (MVSC), in which the tensor nuclear norm is commonly implemented using discrete Fourier transform (DFT). Unfortunately, existing DFT-oriented MVSC methods may provide unsatisfactory results since (1) DFT exploits complex arithmetic in the Fourier domain, usually resulting in high tubal tensor rank, and (2) local structural information is rarely considered. To solve these problems, in this paper, we propose a novel double discrete cosine transform (DCT)-oriented multi-view subspace clustering (D2CTMSC) method, in which the first DCT aims to derive the tensor nuclear norm without complex arithmetic while the second DCT aims to explore the local structure of the self-representation tensor, such that the essential low-rankness and sparsity embedding in multi-view features can be thoroughly exploited. Moreover, we design an effective alternating iteration strategy to solve the proposed model. Experimental results on four types of multi-view datasets (News stories, Face images, Scene images, and Generic objects) demonstrate the superiority of the D2CTMSC method compared with DFT-based methods and other state-of-the-art clustering methods 
650 4 |a Journal Article 
700 1 |a Wang, Shuqin  |e verfasserin  |4 aut 
700 1 |a Zhao, Yin-Ping  |e verfasserin  |4 aut 
700 1 |a Chen, C L Philip  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 18., Seite 2491-2501  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:18  |g pages:2491-2501 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3378471  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 18  |h 2491-2501