Classification of wheat diseases using deep learning networks with field and glasshouse images

© 2022 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology.

Bibliographische Detailangaben
Veröffentlicht in:Plant pathology. - 1983. - 72(2023), 3 vom: 20. Apr., Seite 536-547
1. Verfasser: Long, Megan (VerfasserIn)
Weitere Verfasser: Hartley, Matthew, Morris, Richard J, Brown, James K M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Plant pathology
Schlagworte:Journal Article brown rust convolutional neural network (CNN) deep learning septoria wheat yellow rust
LEADER 01000caa a22002652 4500
001 NLM37005749X
003 DE-627
005 20241105232204.0
007 cr uuu---uuuuu
008 240323s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/ppa.13684  |2 doi 
028 5 2 |a pubmed24n1591.xml 
035 |a (DE-627)NLM37005749X 
035 |a (NLM)38516179 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Long, Megan  |e verfasserin  |4 aut 
245 1 0 |a Classification of wheat diseases using deep learning networks with field and glasshouse images 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology. 
520 |a Crop diseases can cause major yield losses, so the ability to detect and identify them in their early stages is important for disease control. Deep learning methods have shown promise in classifying multiple diseases; however, many studies do not use datasets that represent real field conditions, necessitating either further image processing or reducing their applicability. In this paper, we present a dataset of wheat images taken in real growth situations, including both field and glasshouse conditions, with five categories: healthy plants and four foliar diseases, yellow rust, brown rust, powdery mildew and Septoria leaf blotch. This dataset was used to train a deep learning model. The resulting model, named CerealConv, reached a 97.05% classification accuracy. When tested against trained pathologists on a subset of images from the larger dataset, the model delivered an accuracy score 2% higher than the best-performing pathologist. Image masks were used to show that the model was using the correct information to drive its classifications. These results show that deep learning networks are a viable tool for disease detection and classification in the field, and disease quantification is a logical next step 
650 4 |a Journal Article 
650 4 |a brown rust 
650 4 |a convolutional neural network (CNN) 
650 4 |a deep learning 
650 4 |a septoria 
650 4 |a wheat 
650 4 |a yellow rust 
700 1 |a Hartley, Matthew  |e verfasserin  |4 aut 
700 1 |a Morris, Richard J  |e verfasserin  |4 aut 
700 1 |a Brown, James K M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant pathology  |d 1983  |g 72(2023), 3 vom: 20. Apr., Seite 536-547  |w (DE-627)NLM098192892  |x 0032-0862  |7 nnns 
773 1 8 |g volume:72  |g year:2023  |g number:3  |g day:20  |g month:04  |g pages:536-547 
856 4 0 |u http://dx.doi.org/10.1111/ppa.13684  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 72  |j 2023  |e 3  |b 20  |c 04  |h 536-547