The miR6445-NAC029 module regulates drought tolerance by regulating the expression of glutathione S-transferase U23 and reactive oxygen species scavenging in Populus
© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
Veröffentlicht in: | The New phytologist. - 1979. - 242(2024), 5 vom: 07. Juni, Seite 2043-2058 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't GSTU23 NAC029 Populus drought miR6445 reactive oxygen species Free Radical Scavengers Glutathione Transferase mehr... |
Zusammenfassung: | © 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation. MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees |
---|---|
Beschreibung: | Date Completed 08.05.2024 Date Revised 20.08.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.19703 |