Adaptive responses of nitric oxide (NO) and its intricate dialogue with phytohormones during salinity stress

Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 208(2024) vom: 26. März, Seite 108504
1. Verfasser: Ahmad, Bilal (VerfasserIn)
Weitere Verfasser: Mukarram, Mohammad, Choudhary, Sadaf, Petrík, Peter, Dar, Tariq Ahmad, Khan, M Masroor A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Review Nitric oxide Oxidative damage Photosynthesis Phytohormones Reactive oxygen species Salt stress Plant Growth Regulators Nitric Oxide mehr... 31C4KY9ESH Reactive Oxygen Species
Beschreibung
Zusammenfassung:Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Nitric oxide (NO) is a gaseous free radical that acts as a messenger for various plant phenomena corresponding to photomorphogenesis, fertilisation, flowering, germination, growth, and productivity. Recent developments have suggested the critical role of NO in inducing adaptive responses in plants during salinity. NO minimises salinity-induced photosynthetic damage and improves plant-water relation, nutrient uptake, stomatal conductance, electron transport, and ROS and antioxidant metabolism. NO contributes active participation in ABA-mediated stomatal regulation. Similar crosstalk of NO with other phytohormones such as auxins (IAAs), gibberellins (GAs), cytokinins (CKs), ethylene (ET), salicylic acid (SA), strigolactones (SLs), and brassinosteroids (BRs) were also observed. Additionally, we discuss NO interaction with other gaseous signalling molecules such as reactive oxygen species (ROS) and reactive sulphur species (RSS). Conclusively, the present review traces critical events in NO-induced morpho-physiological adjustments under salt stress and discusses how such modulations upgrade plant resilience
Beschreibung:Date Completed 01.04.2024
Date Revised 01.04.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.108504