Non-invasive prediction of overall survival time for glioblastoma multiforme patients based on multimodal MRI radiomics

© 2023 The Authors. International Journal of Imaging Systems and Technology published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 33(2023), 4 vom: 14. Juli, Seite 1261-1274
1. Verfasser: Zhu, Jingyu (VerfasserIn)
Weitere Verfasser: Ye, Jianming, Dong, Leshui, Ma, Xiaofei, Tang, Na, Xu, Peng, Jin, Wei, Li, Ruipeng, Yang, Guang, Lai, Xiaobo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article deep learning glioblastoma multiforme magnetic resonance imaging overall survival time radiomics
LEADER 01000caa a22002652 4500
001 NLM369950704
003 DE-627
005 20241104232212.0
007 cr uuu---uuuuu
008 240320s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22869  |2 doi 
028 5 2 |a pubmed24n1590.xml 
035 |a (DE-627)NLM369950704 
035 |a (NLM)38505467 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Jingyu  |e verfasserin  |4 aut 
245 1 0 |a Non-invasive prediction of overall survival time for glioblastoma multiforme patients based on multimodal MRI radiomics 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 04.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. International Journal of Imaging Systems and Technology published by Wiley Periodicals LLC. 
520 |a Glioblastoma multiforme (GBM) is the most common and deadly primary malignant brain tumor. As GBM tumor is aggressive and shows high biological heterogeneity, the overall survival (OS) time is extremely low even with the most aggressive treatment. If the OS time can be predicted before surgery, developing personalized treatment plans for GBM patients will be beneficial. Magnetic resonance imaging (MRI) is a commonly used diagnostic tool for brain tumors with high-resolution and sound imaging effects. However, in clinical practice, doctors mainly rely on manually segmenting the tumor regions in MRI and predicting the OS time of GBM patients, which is time-consuming, subjective and repetitive, limiting the effectiveness of clinical diagnosis and treatment. Therefore, it is crucial to segment the brain tumor regions in MRI, and an accurate pre-operative prediction of OS time for personalized treatment is highly desired. In this study, we present a multimodal MRI radiomics-based automatic framework for non-invasive prediction of the OS time for GBM patients. A modified 3D-UNet model is built to segment tumor subregions in MRI of GBM patients; then, the radiomic features in the tumor subregions are extracted and combined with the clinical features input into the Support Vector Regression (SVR) model to predict the OS time. In the experiments, the BraTS2020, BraTS2019 and BraTS2018 datasets are used to evaluate our framework. Our model achieves competitive OS time prediction accuracy compared to most typical approaches 
650 4 |a Journal Article 
650 4 |a deep learning 
650 4 |a glioblastoma multiforme 
650 4 |a magnetic resonance imaging 
650 4 |a overall survival time 
650 4 |a radiomics 
700 1 |a Ye, Jianming  |e verfasserin  |4 aut 
700 1 |a Dong, Leshui  |e verfasserin  |4 aut 
700 1 |a Ma, Xiaofei  |e verfasserin  |4 aut 
700 1 |a Tang, Na  |e verfasserin  |4 aut 
700 1 |a Xu, Peng  |e verfasserin  |4 aut 
700 1 |a Jin, Wei  |e verfasserin  |4 aut 
700 1 |a Li, Ruipeng  |e verfasserin  |4 aut 
700 1 |a Yang, Guang  |e verfasserin  |4 aut 
700 1 |a Lai, Xiaobo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 33(2023), 4 vom: 14. Juli, Seite 1261-1274  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnns 
773 1 8 |g volume:33  |g year:2023  |g number:4  |g day:14  |g month:07  |g pages:1261-1274 
856 4 0 |u http://dx.doi.org/10.1002/ima.22869  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2023  |e 4  |b 14  |c 07  |h 1261-1274