Reusable Architecture Growth for Continual Stereo Matching

The remarkable performance of recent stereo depth estimation models benefits from the successful use of convolutional neural networks to regress dense disparity. Akin to most tasks, this needs gathering training data that covers a number of heterogeneous scenes at deployment time. However, training...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 19. Aug., Seite 6167-6184
1. Verfasser: Zhang, Chenghao (VerfasserIn)
Weitere Verfasser: Meng, Gaofeng, Fan, Bin, Tian, Kun, Zhang, Zhaoxiang, Xiang, Shiming, Pan, Chunhong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article