ResGEM : Multi-scale Graph Embedding Network for Residual Mesh Denoising

Mesh denoising is a crucial technology that aims to recover a high-fidelity 3D mesh from a noise-corrupted one. Deep learning methods, particularly graph convolutional networks (GCNs) based mesh denoisers, have demonstrated their effectiveness in removing various complex real-world noises while pres...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 18. März
1. Verfasser: Zhou, Ziqi (VerfasserIn)
Weitere Verfasser: Yuan, Mengke, Zhao, Mingyang, Guo, Jianwei, Yan, Dong-Ming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369884124
003 DE-627
005 20240320234841.0
007 cr uuu---uuuuu
008 240319s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3378309  |2 doi 
028 5 2 |a pubmed24n1337.xml 
035 |a (DE-627)NLM369884124 
035 |a (NLM)38498760 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Ziqi  |e verfasserin  |4 aut 
245 1 0 |a ResGEM  |b Multi-scale Graph Embedding Network for Residual Mesh Denoising 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Mesh denoising is a crucial technology that aims to recover a high-fidelity 3D mesh from a noise-corrupted one. Deep learning methods, particularly graph convolutional networks (GCNs) based mesh denoisers, have demonstrated their effectiveness in removing various complex real-world noises while preserving authentic geometry. However, it is still a quite challenging work to faithfully regress uncontaminated normals and vertices on meshes with irregular topology. In this paper, we propose a novel pipeline that incorporates two parallel normal-aware and vertex-aware branches to achieve a balance between smoothness and geometric details while maintaining the flexibility of surface topology. We introduce ResGEM, a new GCN, with multi-scale embedding modules and residual decoding structures to facilitate normal regression and vertex modification for mesh denoising. To effectively extract multi-scale surface features while avoiding the loss of topological information caused by graph pooling or coarsening operations, we encode the noisy normal and vertex graphs using four edge-conditioned embedding modules (EEMs) at different scales. This allows us to obtain favorable feature representations with multiple receptive field sizes. Formulating the denoising problem into a residual learning problem, the decoder incorporates residual blocks to accurately predict true normals and vertex offsets from the embedded feature space. Moreover, we propose novel regularization terms in the loss function that enhance the smoothing and generalization ability of our network by imposing constraints on normal consistency. Comprehensive experiments have been conducted to demonstrate the superiority of our method over the state-of-the-art on both synthetic and real-scanned datasets 
650 4 |a Journal Article 
700 1 |a Yuan, Mengke  |e verfasserin  |4 aut 
700 1 |a Zhao, Mingyang  |e verfasserin  |4 aut 
700 1 |a Guo, Jianwei  |e verfasserin  |4 aut 
700 1 |a Yan, Dong-Ming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 18. März  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:18  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3378309  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 18  |c 03