Adsorption Isotherm and Mechanism of Ca2+ Binding to Polyelectrolyte

Polyelectrolytes, such as poly(acrylic acid) (PAA), can effectively mitigate CaCO3 scale formation. Despite their success as antiscalants, the underlying mechanism of binding of Ca2+ to polyelectrolyte chains remains unresolved. Through all-atom molecular dynamics simulations, we constructed an adso...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 12 vom: 26. März, Seite 6212-6219
1. Verfasser: Mantha, Sriteja (VerfasserIn)
Weitere Verfasser: Glisman, Alec, Yu, Decai, Wasserman, Eric P, Backer, Scott, Wang, Zhen-Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Polyelectrolytes, such as poly(acrylic acid) (PAA), can effectively mitigate CaCO3 scale formation. Despite their success as antiscalants, the underlying mechanism of binding of Ca2+ to polyelectrolyte chains remains unresolved. Through all-atom molecular dynamics simulations, we constructed an adsorption isotherm of Ca2+ binding to sodium polyacrylate (NaPAA) and investigated the associated binding mechanism. We find that the number of calcium ions adsorbed [Ca2+]ads to the polymer saturates at moderately high concentrations of free calcium ions [Ca2+]aq in the solution. This saturation value is intricately connected with the binding modes accessible to Ca2+ ions when they bind to the polyelectrolyte chain. We identify two dominant binding modes: the first involves binding to at most two carboxylate oxygens on a polyacrylate chain, and the second, termed the high binding mode, involves binding to four or more carboxylate oxygens. As the concentration of free calcium ions [Ca2+]aq increases from low to moderate levels, the polyelectrolyte chain undergoes a conformational transition from an extended coil to a hairpin-like structure, enhancing the accessibility to the high binding mode. At moderate concentrations of [Ca2+]aq, the high binding mode accounts for at least one-third of all binding events. The chain's conformational change and its consequent access to the high binding mode are found to increase the overall Ca2+ ion binding capacity of the polyelectrolyte chain
Beschreibung:Date Revised 11.11.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03640