A Semantic and Motion-Aware Spatiotemporal Transformer Network for Action Detection

This paper presents a novel spatiotemporal transformer network that introduces several original components to detect actions in untrimmed videos. First, the multi-feature selective semantic attention model calculates the correlations between spatial and motion features to model spatiotemporal intera...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 9 vom: 14. Aug., Seite 6055-6069
1. Verfasser: Korban, Matthew (VerfasserIn)
Weitere Verfasser: Youngs, Peter, Acton, Scott T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369734963
003 DE-627
005 20240807232459.0
007 cr uuu---uuuuu
008 240315s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3377192  |2 doi 
028 5 2 |a pubmed24n1494.xml 
035 |a (DE-627)NLM369734963 
035 |a (NLM)38483796 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Korban, Matthew  |e verfasserin  |4 aut 
245 1 2 |a A Semantic and Motion-Aware Spatiotemporal Transformer Network for Action Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.08.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper presents a novel spatiotemporal transformer network that introduces several original components to detect actions in untrimmed videos. First, the multi-feature selective semantic attention model calculates the correlations between spatial and motion features to model spatiotemporal interactions between different action semantics properly. Second, the motion-aware network encodes the locations of action semantics in video frames utilizing the motion-aware 2D positional encoding algorithm. Such a motion-aware mechanism memorizes the dynamic spatiotemporal variations in action frames that current methods cannot exploit. Third, the sequence-based temporal attention model captures the heterogeneous temporal dependencies in action frames. In contrast to standard temporal attention used in natural language processing, primarily aimed at finding similarities between linguistic words, the proposed sequence-based temporal attention is designed to determine both the differences and similarities between video frames that jointly define the meaning of actions. The proposed approach outperforms the state-of-the-art solutions on four spatiotemporal action datasets: AVA 2.2, AVA 2.1, UCF101-24, and EPIC-Kitchens 
650 4 |a Journal Article 
700 1 |a Youngs, Peter  |e verfasserin  |4 aut 
700 1 |a Acton, Scott T  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 9 vom: 14. Aug., Seite 6055-6069  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:9  |g day:14  |g month:08  |g pages:6055-6069 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3377192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 9  |b 14  |c 08  |h 6055-6069