Risk assessment and classification prediction for water environment treatment PPP projects

Water treatment public-private partnership (PPP) projects are pivotal for sustainable water management but are often challenged by complex risk factors. Efficient risk management in these projects is crucial, yet traditional methodologies often fall short of addressing the dynamic and intricate natu...

Description complète

Détails bibliographiques
Publié dans:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 89(2024), 5 vom: 14. März, Seite 1264-1281
Auteur principal: Yang, Ruijia (Auteur)
Autres auteurs: Feng, Jingchun, Tang, Jiansong, Sun, Yong
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:Water science and technology : a journal of the International Association on Water Pollution Research
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM369731972
003 DE-627
005 20250305224452.0
007 cr uuu---uuuuu
008 240315s2024 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2024.052  |2 doi 
028 5 2 |a pubmed25n1231.xml 
035 |a (DE-627)NLM369731972 
035 |a (NLM)38483497 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Ruijia  |e verfasserin  |4 aut 
245 1 0 |a Risk assessment and classification prediction for water environment treatment PPP projects 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.03.2024 
500 |a Date Revised 27.03.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Water treatment public-private partnership (PPP) projects are pivotal for sustainable water management but are often challenged by complex risk factors. Efficient risk management in these projects is crucial, yet traditional methodologies often fall short of addressing the dynamic and intricate nature of these risks. Addressing this gap, this comprehensive study introduces an advanced risk classification prediction model tailored for water treatment PPP projects, aimed at enhancing risk management capabilities. The proposed model encompasses an intricate evaluation of crucial risk areas: the natural and ecological environments, socio-economic factors, and engineering entities. It delves into the complex relationships between these risk elements and the overall risk profile of projects. Grounded in a sophisticated ensemble learning framework employing stacking, our model is further refined through a weighted voting mechanism, significantly elevating its predictive accuracy. Rigorous validation using data from the Jiujiang City water environment system project Phase I confirms the model's superiority over standard machine learning models. The development of this model marks a significant stride in risk classification for water treatment PPP projects, offering a powerful tool for enhancing risk management practices. Beyond accurately predicting project risks, this model also aids in developing effective government risk management strategies 
650 4 |a Journal Article 
700 1 |a Feng, Jingchun  |e verfasserin  |4 aut 
700 1 |a Tang, Jiansong  |e verfasserin  |4 aut 
700 1 |a Sun, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 89(2024), 5 vom: 14. März, Seite 1264-1281  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:89  |g year:2024  |g number:5  |g day:14  |g month:03  |g pages:1264-1281 
856 4 0 |u http://dx.doi.org/10.2166/wst.2024.052  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 89  |j 2024  |e 5  |b 14  |c 03  |h 1264-1281