Meta Clothing Status Calibration for Long-Term Person Re-Identification

Recent studies have seen significant advancements in the field of long-term person re-identification (LT-reID) through the use of clothing-irrelevant or insensitive features. This work takes the field a step further by addressing a previously unexplored issue, the Clothing Status Distribution Shift...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 26., Seite 2334-2346
1. Verfasser: Huang, Yan (VerfasserIn)
Weitere Verfasser: Wu, Qiang, Zhang, Zhang, Shan, Caifeng, Zhong, Yi, Wang, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369681533
003 DE-627
005 20240326235833.0
007 cr uuu---uuuuu
008 240315s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374634  |2 doi 
028 5 2 |a pubmed24n1349.xml 
035 |a (DE-627)NLM369681533 
035 |a (NLM)38478438 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Yan  |e verfasserin  |4 aut 
245 1 0 |a Meta Clothing Status Calibration for Long-Term Person Re-Identification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recent studies have seen significant advancements in the field of long-term person re-identification (LT-reID) through the use of clothing-irrelevant or insensitive features. This work takes the field a step further by addressing a previously unexplored issue, the Clothing Status Distribution Shift (CSDS). CSDS refers to the differing ratios of samples with clothing changes to those without clothing changes between the training and test sets, leading to a decline in LT-reID performance. We establish a connection between the performance of LT-reID and CSDS, and argue that addressing CSDS can improve LT-reID performance. To that end, we propose a novel framework called Meta Clothing Status Calibration (MCSC), which uses meta-learning to optimize the LT-reID model. Specifically, MCSC simulates CSDS between meta-train and meta-test with meta-optimization objectives, optimizing the LT-reID model and making it robust to CSDS. This framework is designed to prevent overfitting and improve the generalization ability of the LT-reID model in the presence of CSDS. Comprehensive evaluations on seven datasets demonstrate that the proposed MCSC framework effectively handles CSDS and improves current state-of-the-art LT-reID methods on several LT-reID benchmarks 
650 4 |a Journal Article 
700 1 |a Wu, Qiang  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhang  |e verfasserin  |4 aut 
700 1 |a Shan, Caifeng  |e verfasserin  |4 aut 
700 1 |a Huang, Yan  |e verfasserin  |4 aut 
700 1 |a Zhong, Yi  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 26., Seite 2334-2346  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:26  |g pages:2334-2346 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374634  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 26  |h 2334-2346