Ultra-High Temperature Operated Ni-Rich Cathode Stabilized by Thermal Barrier for High-Energy Lithium-Ion Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 24 vom: 08. Juni, Seite e2313500
1. Verfasser: Dai, Zhongsheng (VerfasserIn)
Weitere Verfasser: Liu, Yun, Lu, Xia, Zhao, Huiling, Bai, Ying
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Ni‐rich cathodes in situ construction stress–strain structure stabilities thermal safety
LEADER 01000caa a22002652 4500
001 NLM369618769
003 DE-627
005 20240613232224.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202313500  |2 doi 
028 5 2 |a pubmed24n1439.xml 
035 |a (DE-627)NLM369618769 
035 |a (NLM)38472160 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Zhongsheng  |e verfasserin  |4 aut 
245 1 0 |a Ultra-High Temperature Operated Ni-Rich Cathode Stabilized by Thermal Barrier for High-Energy Lithium-Ion Batteries 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.06.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 Wiley‐VCH GmbH. 
520 |a The pursuit of high energy density batteries has expedited the fast development of Ni-rich cathodes. However, the chemo-mechanical degradation induced by local thermal accumulation and anisotropic lattice strain is posing great obstacles for its wide applications. Herein, a highly-antioxidative BaZrO3 thermal barrier engineered LiNi0.8Co0.1Mn0.1O2 cathode through an in situ construction strategy is first reported to circumvent the above issues. It is found that the Zr ions are incorporated to Ni-rich material lattice and influence on the topotactic lithiation as well as enhance the oxygen electronegativity through the rigid Zr─O bonds, which effectively alleviates the lattice strain propagation and decreases the excessive oxidization of lattice oxygen for charge compensation. More importantly, the BaZrO3 thermal barrier with an ultra-low thermal conductivity validly impedes the fast heat exchange between electrode and electrolyte to mitigate the severe surface side reactions. This helps an ultra-high mass loading Li-ion pouch cell deliver a specific energy density of 690 Wh kg-1 at active material level and an excellent capacity retention of 92.5% after 1400 cycles under 1 C at 25 °C. Tested at a high temperature of 55 °C, the pouch type full-cell also exhibits 88.7% in capacity retention after 1200 cycles 
650 4 |a Journal Article 
650 4 |a Ni‐rich cathodes 
650 4 |a in situ construction 
650 4 |a stress–strain 
650 4 |a structure stabilities 
650 4 |a thermal safety 
700 1 |a Liu, Yun  |e verfasserin  |4 aut 
700 1 |a Lu, Xia  |e verfasserin  |4 aut 
700 1 |a Zhao, Huiling  |e verfasserin  |4 aut 
700 1 |a Bai, Ying  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 24 vom: 08. Juni, Seite e2313500  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:36  |g year:2024  |g number:24  |g day:08  |g month:06  |g pages:e2313500 
856 4 0 |u http://dx.doi.org/10.1002/adma.202313500  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 24  |b 08  |c 06  |h e2313500