Learning to Restore Compressed Point Cloud Attribute : A Fully Data-Driven Approach and A Rules-Unrolling-Based Optimization

The emergence of holographic media drives the standardization of Geometry-based Point Cloud Compression (G-PCC) to sustain networked service provisioning. However, G-PCC inevitably introduces visually annoying artifacts, degrading the quality of experience (QoE). This work focuses on restoring G-PCC...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 12. März
1. Verfasser: Zhang, Junteng (VerfasserIn)
Weitere Verfasser: Zhang, Junzhe, Ding, Dandan, Ma, Zhan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603311
003 DE-627
005 20240314235509.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3375861  |2 doi 
028 5 2 |a pubmed24n1329.xml 
035 |a (DE-627)NLM369603311 
035 |a (NLM)38470604 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Junteng  |e verfasserin  |4 aut 
245 1 0 |a Learning to Restore Compressed Point Cloud Attribute  |b A Fully Data-Driven Approach and A Rules-Unrolling-Based Optimization 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a The emergence of holographic media drives the standardization of Geometry-based Point Cloud Compression (G-PCC) to sustain networked service provisioning. However, G-PCC inevitably introduces visually annoying artifacts, degrading the quality of experience (QoE). This work focuses on restoring G-PCC compressed point cloud attributes, e.g., RGB colors, to which fully data-driven and rules-unrolling-based post-processing filters are studied. At first, as compressed attributes exhibit nested blockiness, we develop a learning-based sample adaptive offset (NeuralSAO), which leverages a neural model using multiscale feature aggregation and embedding to characterize local correlations for quantization error compensation. Later, given statistically Gaussian distributed quantization noise, we suggest the utilization of a bilateral filter with Gaussian kernels to weigh neighbors by jointly considering their geometric and photometric contributions for restoration. Since local signals often present varying distributions, we propose estimating the smoothing parameters of the bilateral filter using an ultra-lightweight neural model. Such a bilateral filter with learnable parameters is called NeuralBF. The proposed NeuralSAO demonstrates the state-of-art restoration quality improvement, e.g., >20% BD-BR (Bjøntegaard delta rate) reduction over G-PCC on solid points clouds. However, NeuralSAO is computationally intensive and may suffer from poor generalization. On the other hand, although NeuralBF only achieves half of the gains of NeuralSAO, it is lightweight and exhibits impressive generalization across various samples. This comparative study between the data-driven large-scale NeuralSAO and the rules-unrolling-based small-scale NeuralBF helps to understand the capacity (i.e., performance, complexity, generalization) of underlying filters in terms of the quality restoration for compressed point cloud attribute 
650 4 |a Journal Article 
700 1 |a Zhang, Junzhe  |e verfasserin  |4 aut 
700 1 |a Ding, Dandan  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 12. März  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:12  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3375861  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 12  |c 03