|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM369603184 |
003 |
DE-627 |
005 |
20240319233010.0 |
007 |
cr uuu---uuuuu |
008 |
240313s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2024.3374048
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1336.xml
|
035 |
|
|
|a (DE-627)NLM369603184
|
035 |
|
|
|a (NLM)38470590
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liao, Jingyi
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a COFT-AD
|b COntrastive Fine-Tuning for Few-Shot Anomaly Detection
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 18.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Existing approaches towards anomaly detection (AD) often rely on a substantial amount of anomaly-free data to train representation and density models. However, large anomaly-free datasets may not always be available before the inference stage; in which case an anomaly detection model must be trained with only a handful of normal samples, a.k.a. few-shot anomaly detection (FSAD). In this paper, we propose a novel methodology to address the challenge of FSAD which incorporates two important techniques. Firstly, we employ a model pre-trained on a large source dataset to initialize model weights. Secondly, to ameliorate the covariate shift between source and target domains, we adopt contrastive training to fine-tune on the few-shot target domain data. To learn suitable representations for the downstream AD task, we additionally incorporate cross-instance positive pairs to encourage a tight cluster of the normal samples, and negative pairs for better separation between normal and synthesized negative samples. We evaluate few-shot anomaly detection on 3 controlled AD tasks and 4 real-world AD tasks to demonstrate the effectiveness of the proposed method
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Xu, Xun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nguyen, Manh Cuong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Goodge, Adam
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Foo, Chuan Sheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 33(2024) vom: 18., Seite 2090-2103
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2024
|g day:18
|g pages:2090-2103
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2024.3374048
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2024
|b 18
|h 2090-2103
|