COFT-AD : COntrastive Fine-Tuning for Few-Shot Anomaly Detection

Existing approaches towards anomaly detection (AD) often rely on a substantial amount of anomaly-free data to train representation and density models. However, large anomaly-free datasets may not always be available before the inference stage; in which case an anomaly detection model must be trained...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 18., Seite 2090-2103
1. Verfasser: Liao, Jingyi (VerfasserIn)
Weitere Verfasser: Xu, Xun, Nguyen, Manh Cuong, Goodge, Adam, Foo, Chuan Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603184
003 DE-627
005 20240319233010.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374048  |2 doi 
028 5 2 |a pubmed24n1336.xml 
035 |a (DE-627)NLM369603184 
035 |a (NLM)38470590 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liao, Jingyi  |e verfasserin  |4 aut 
245 1 0 |a COFT-AD  |b COntrastive Fine-Tuning for Few-Shot Anomaly Detection 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing approaches towards anomaly detection (AD) often rely on a substantial amount of anomaly-free data to train representation and density models. However, large anomaly-free datasets may not always be available before the inference stage; in which case an anomaly detection model must be trained with only a handful of normal samples, a.k.a. few-shot anomaly detection (FSAD). In this paper, we propose a novel methodology to address the challenge of FSAD which incorporates two important techniques. Firstly, we employ a model pre-trained on a large source dataset to initialize model weights. Secondly, to ameliorate the covariate shift between source and target domains, we adopt contrastive training to fine-tune on the few-shot target domain data. To learn suitable representations for the downstream AD task, we additionally incorporate cross-instance positive pairs to encourage a tight cluster of the normal samples, and negative pairs for better separation between normal and synthesized negative samples. We evaluate few-shot anomaly detection on 3 controlled AD tasks and 4 real-world AD tasks to demonstrate the effectiveness of the proposed method 
650 4 |a Journal Article 
700 1 |a Xu, Xun  |e verfasserin  |4 aut 
700 1 |a Nguyen, Manh Cuong  |e verfasserin  |4 aut 
700 1 |a Goodge, Adam  |e verfasserin  |4 aut 
700 1 |a Foo, Chuan Sheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 18., Seite 2090-2103  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:18  |g pages:2090-2103 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374048  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 18  |h 2090-2103