Neuromorphic Imaging With Joint Image Deblurring and Event Denoising

Neuromorphic imaging reacts to per-pixel brightness changes of a dynamic scene with high temporal precision and responds with asynchronous streaming events as a result. It also often supports a simultaneous output of an intensity image. Nevertheless, the raw events typically involve a large amount o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 12., Seite 2318-2333
1. Verfasser: Zhang, Pei (VerfasserIn)
Weitere Verfasser: Liu, Haosen, Ge, Zhou, Wang, Chutian, Lam, Edmund Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603141
003 DE-627
005 20240323001122.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374074  |2 doi 
028 5 2 |a pubmed24n1341.xml 
035 |a (DE-627)NLM369603141 
035 |a (NLM)38470586 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Pei  |e verfasserin  |4 aut 
245 1 0 |a Neuromorphic Imaging With Joint Image Deblurring and Event Denoising 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Neuromorphic imaging reacts to per-pixel brightness changes of a dynamic scene with high temporal precision and responds with asynchronous streaming events as a result. It also often supports a simultaneous output of an intensity image. Nevertheless, the raw events typically involve a large amount of noise due to the high sensitivity of the sensor, while capturing fast-moving objects at low frame rates results in blurry images. These deficiencies significantly degrade human observation and machine processing. Fortunately, the two information sources are inherently complementary - events with microsecond-level temporal resolution, which are triggered by the edges of objects recorded in a latent sharp image, can supply rich motion details missing from the blurry one. In this work, we bring the two types of data together and introduce a simple yet effective unifying algorithm to jointly reconstruct blur-free images and noise-robust events in an iterative coarse-to-fine fashion. Specifically, an event-regularized prior offers precise high-frequency structures and dynamic features for blind deblurring, while image gradients serve as a kind of faithful supervision in regulating neuromorphic noise removal. Comprehensively evaluated on real and synthetic samples, such a synergy delivers superior reconstruction quality for both images with severe motion blur and raw event streams with a storm of noise, and also exhibits greater robustness to challenging realistic scenarios such as varying levels of illumination, contrast and motion magnitude. Meanwhile, it can be driven by much fewer events and holds a competitive edge at computational time overhead, rendering itself preferable as available computing resources are limited. Our solution gives impetus to the improvement of both sensing data and paves the way for highly accurate neuromorphic reasoning and analysis 
650 4 |a Journal Article 
700 1 |a Liu, Haosen  |e verfasserin  |4 aut 
700 1 |a Ge, Zhou  |e verfasserin  |4 aut 
700 1 |a Wang, Chutian  |e verfasserin  |4 aut 
700 1 |a Lam, Edmund Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 12., Seite 2318-2333  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:12  |g pages:2318-2333 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374074  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 12  |h 2318-2333