Semantics Disentangling for Cross-Modal Retrieval

Cross-modal retrieval (e.g., query a given image to obtain a semantically similar sentence, and vice versa) is an important but challenging task, as the heterogeneous gap and inconsistent distributions exist between different modalities. The dominant approaches struggle to bridge the heterogeneity b...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 01., Seite 2226-2237
1. Verfasser: Wang, Zheng (VerfasserIn)
Weitere Verfasser: Xu, Xing, Wei, Jiwei, Xie, Ning, Yang, Yang, Shen, Heng Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603095
003 DE-627
005 20240326235822.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374111  |2 doi 
028 5 2 |a pubmed24n1349.xml 
035 |a (DE-627)NLM369603095 
035 |a (NLM)38470583 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Zheng  |e verfasserin  |4 aut 
245 1 0 |a Semantics Disentangling for Cross-Modal Retrieval 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Cross-modal retrieval (e.g., query a given image to obtain a semantically similar sentence, and vice versa) is an important but challenging task, as the heterogeneous gap and inconsistent distributions exist between different modalities. The dominant approaches struggle to bridge the heterogeneity by capturing the common representations among heterogeneous data in a constructed subspace which can reflect the semantic closeness. However, insufficient consideration is taken into the fact that learned latent representations are actually heavily entangled with those semantic-unrelated features, which obviously further compounds the challenges of cross-modal retrieval. To alleviate the difficulty, this work makes an assumption that the data are jointly characterized by two independent features: semantic-shared and semantic-unrelated representations. The former presents characteristics of consistent semantics shared by different modalities, while the latter reflects the characteristics with respect to the modality yet unrelated to semantics, such as background, illumination, and other low-level information. Therefore, this paper aims to disentangle the shared semantics from the entangled features, andthus the purer semantic representation can promote the closeness of paired data. Specifically, this paper designs a novel Semantics Disentangling approach for Cross-Modal Retrieval (termed as SDCMR) to explicitly decouple the two different features based on variational auto-encoder. Next, the reconstruction is performed by exchanging shared semantics to ensure the learning of semantic consistency. Moreover, a dual adversarial mechanism is designed to disentangle the two independent features via a pushing-and-pulling strategy. Comprehensive experiments on four widely used datasets demonstrate the effectiveness and superiority of the proposed SDCMR method by achieving a new bar on performance when compared against 15 state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Xu, Xing  |e verfasserin  |4 aut 
700 1 |a Wei, Jiwei  |e verfasserin  |4 aut 
700 1 |a Xie, Ning  |e verfasserin  |4 aut 
700 1 |a Yang, Yang  |e verfasserin  |4 aut 
700 1 |a Shen, Heng Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 01., Seite 2226-2237  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:01  |g pages:2226-2237 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374111  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 01  |h 2226-2237