Toward Video Anomaly Retrieval From Video Anomaly Detection : New Benchmarks and Model

Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 20., Seite 2213-2225
1. Verfasser: Wu, Peng (VerfasserIn)
Weitere Verfasser: Liu, Jing, He, Xiangteng, Peng, Yuxin, Wang, Peng, Zhang, Yanning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603087
003 DE-627
005 20240326235822.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374070  |2 doi 
028 5 2 |a pubmed24n1349.xml 
035 |a (DE-627)NLM369603087 
035 |a (NLM)38470582 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Peng  |e verfasserin  |4 aut 
245 1 0 |a Toward Video Anomaly Retrieval From Video Anomaly Detection  |b New Benchmarks and Model 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video anomaly detection (VAD) has been paid increasing attention due to its potential applications, its current dominant tasks focus on online detecting anomalies, which can be roughly interpreted as the binary or multiple event classification. However, such a setup that builds relationships between complicated anomalous events and single labels, e.g., "vandalism", is superficial, since single labels are deficient to characterize anomalous events. In reality, users tend to search a specific video rather than a series of approximate videos. Therefore, retrieving anomalous events using detailed descriptions is practical and positive but few researches focus on this. In this context, we propose a novel task called Video Anomaly Retrieval (VAR), which aims to pragmatically retrieve relevant anomalous videos by cross-modalities, e.g., language descriptions and synchronous audios. Unlike the current video retrieval where videos are assumed to be temporally well-trimmed with short duration, VAR is devised to retrieve long untrimmed videos which may be partially relevant to the given query. To achieve this, we present two large-scale VAR benchmarks and design a model called Anomaly-Led Alignment Network (ALAN) for VAR. In ALAN, we propose an anomaly-led sampling to focus on key segments in long untrimmed videos. Then, we introduce an efficient pretext task to enhance semantic associations between video-text fine-grained representations. Besides, we leverage two complementary alignments to further match cross-modal contents. Experimental results on two benchmarks reveal the challenges of VAR task and also demonstrate the advantages of our tailored method. Captions are publicly released at https://github.com/Roc-Ng/VAR 
650 4 |a Journal Article 
700 1 |a Liu, Jing  |e verfasserin  |4 aut 
700 1 |a He, Xiangteng  |e verfasserin  |4 aut 
700 1 |a Peng, Yuxin  |e verfasserin  |4 aut 
700 1 |a Wang, Peng  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 20., Seite 2213-2225  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:20  |g pages:2213-2225 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374070  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 20  |h 2213-2225