CreativeSeg : Semantic Segmentation of Creative Sketches

The problem of sketch semantic segmentation is far from being solved. Despite existing methods exhibiting near-saturating performances on simple sketches with high recognisability, they suffer serious setbacks when the target sketches are products of an imaginative process with high degree of creati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 12., Seite 2266-2278
1. Verfasser: Zheng, Yixiao (VerfasserIn)
Weitere Verfasser: Pang, Kaiyue, Das, Ayan, Chang, Dongliang, Song, Yi-Zhe, Ma, Zhanyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369603079
003 DE-627
005 20240323001122.0
007 cr uuu---uuuuu
008 240313s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3374196  |2 doi 
028 5 2 |a pubmed24n1341.xml 
035 |a (DE-627)NLM369603079 
035 |a (NLM)38470581 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zheng, Yixiao  |e verfasserin  |4 aut 
245 1 0 |a CreativeSeg  |b Semantic Segmentation of Creative Sketches 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The problem of sketch semantic segmentation is far from being solved. Despite existing methods exhibiting near-saturating performances on simple sketches with high recognisability, they suffer serious setbacks when the target sketches are products of an imaginative process with high degree of creativity. We hypothesise that human creativity, being highly individualistic, induces a significant shift in distribution of sketches, leading to poor model generalisation. Such hypothesis, backed by empirical evidences, opens the door for a solution that explicitly disentangles creativity while learning sketch representations. We materialise this by crafting a learnable creativity estimator that assigns a scalar score of creativity to each sketch. It follows that we introduce CreativeSeg, a learning-to-learn framework that leverages the estimator in order to learn creativity-agnostic representation, and eventually the downstream semantic segmentation task. We empirically verify the superiority of CreativeSeg on the recent "Creative Birds" and "Creative Creatures" creative sketch datasets. Through a human study, we further strengthen the case that the learned creativity score does indeed have a positive correlation with the subjective creativity of human. Codes are available at https://github.com/PRIS-CV/Sketch-CS 
650 4 |a Journal Article 
700 1 |a Pang, Kaiyue  |e verfasserin  |4 aut 
700 1 |a Das, Ayan  |e verfasserin  |4 aut 
700 1 |a Chang, Dongliang  |e verfasserin  |4 aut 
700 1 |a Song, Yi-Zhe  |e verfasserin  |4 aut 
700 1 |a Ma, Zhanyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 12., Seite 2266-2278  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:12  |g pages:2266-2278 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3374196  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 12  |h 2266-2278