Aminopoly(carboxylic acid)-Functionalized PolyHIPE Beads toward Eliminating Trace Heavy Metal Ions from Water

Many advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polym...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 12 vom: 26. März, Seite 6107-6117
1. Verfasser: Guo, Cuicui (VerfasserIn)
Weitere Verfasser: Wang, Yiling, You, Yijing, Chen, Mingjun, Zhang, Ka, Zhang, Shengmiao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Many advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polymerization of a water-in-oil-in-water system. The epoxy groups are further transformed into diethylenetriaminepentaacetic acid (DTPA) with hexamethylene diamine as a bridging agent. The resulting material (DTPApolyHIPE beads) can eliminate trace Cu(II), Cr(III), Pb(II), Fe(III), or Cd(II) from water. When 0.15 g of DTPA@polyHIPE beads are used to adsorb metal ions of 20 mg in 100 mL of water, the residue concentrations of Cu(II), Cr(III), Pb(II), Fe(III), and Cd(II) are reduced to 0.08, 0.06, 0.02, 0.09, and 0.07 mg/L, respectively. The adsorption efficiencies of the beads for these ions are all higher than 99.55%. The adsorbent is durable and exhibits good recyclability by retaining an adsorption capacity of ≥91% after 5 cycles. The negative values of ΔG in the adsorption process indicate that the adsorption is feasible and spontaneous. The chemical adsorption follows the Freundlich adsorption model, indicating a multilayer heterogeneous adsorption. The DTPA@polyHIPE beads have a great potential application in dealing with trace heavy metal ion polluted water
Beschreibung:Date Revised 26.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03050