Nanomaterials Based Multifunctional Bioactivities of V2O5 and Mesoporous CarbonV2O5 Composite : Preparation and Characterization
Nanocarriers have attracted considerable interest due to their prospective applications in the delivery of anticancer medications and their distinct bioactivities. Biogenic nanostructures can be effective nanocarriers for delivering drugs as a consequence of sustainable and biodegradable biomass-der...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 12 vom: 26. März, Seite 6471-6483 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Carbon 7440-44-0 Antioxidants Antineoplastic Agents Doxorubicin 80168379AG Anti-Bacterial Agents |
Zusammenfassung: | Nanocarriers have attracted considerable interest due to their prospective applications in the delivery of anticancer medications and their distinct bioactivities. Biogenic nanostructures can be effective nanocarriers for delivering drugs as a consequence of sustainable and biodegradable biomass-derived nanostructures that perform specific functions. In this case, a vanadium oxide (V2O5) and mesoporous carbonV2O5 (C@V) composite was developed as a possible drug delivery system, and its bioactivities, including antioxidant, antibacterial, and anticancer, were investigated. Doxorubicin (DOX), an anticancer drug, was introduced to the nanoparticles, and the loading and release investigation was conducted. Strong interfacial interactions between mesoporous carbon (MC) and V2O5 nanostructures have been found to improve performance in drug loading and release studies and bioactivities. After incubation, the potent anticancer effectiveness was seen based on C@V nanocomposite. This sample was also utilized to research potential biomedical uses as an antioxidant, antibacterial, and anticancer. The most effective antioxidant, the C@V sample (61.2%), exhibited a higher antioxidant activity than the V-2 sample (44.61%). The C@V sample ultimately attained a high DOX loading efficacy of 88%, in comparison to a pure V2O5 sample (V-2) loading efficacy of 80%. Due to the combination of mesoporous carbon and V2O5, which increases specific surface area and surface sites of action as well as the morphology, it proved that the mesoporous carbon@V2O5 composite (C@V) sample demonstrated greater efficacy |
---|---|
Beschreibung: | Date Completed 27.03.2024 Date Revised 08.08.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.4c00010 |