Random forest identifies predictors of discharge destination following total shoulder arthroplasty

© 2023 The Authors.

Détails bibliographiques
Publié dans:JSES international. - 2020. - 8(2024), 2 vom: 15. März, Seite 317-321
Auteur principal: Chung, Jun Ho (Auteur)
Autres auteurs: Cannon, Damien, Gulbrandsen, Matthew, Yalamanchili, Dheeraj, Phipatanakul, Wesley P, Liu, Joseph, Gowd, Anirudh, Essilfie, Anthony
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:JSES international
Sujets:Journal Article Machine Learning Random forest shoulder arthroplasty surgical outcomes
LEADER 01000caa a22002652c 4500
001 NLM369541847
003 DE-627
005 20250305221629.0
007 cr uuu---uuuuu
008 240311s2024 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jseint.2023.04.003  |2 doi 
028 5 2 |a pubmed25n1231.xml 
035 |a (DE-627)NLM369541847 
035 |a (NLM)38464450 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chung, Jun Ho  |e verfasserin  |4 aut 
245 1 0 |a Random forest identifies predictors of discharge destination following total shoulder arthroplasty 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.03.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 The Authors. 
520 |a Background: Machine learning algorithms are finding increasing use in prediction of surgical outcomes in orthopedics. Random forest is one of such algorithms popular for its relative ease of application and high predictability. In the process of sample classification, algorithms also generate a list of variables most crucial in the sorting process. Total shoulder arthroplasty (TSA) is a common orthopedic procedure after which most patients are discharged home. The authors hypothesized that random forest algorithm would be able to determine most important variables in prediction of nonhome discharge 
520 |a Methods: Authors filtered the National Surgical Quality iImprovement Program database for patients undergoing elective TSA (Current Procedural Terminology 23472) between 2008 and 2018. Applied exclusion criteria included avascular necrosis, trauma, rheumatoid arthritis, and other inflammatory arthropathies to only include surgeries performed for primary osteoarthritis. Using Python and the scikit-learn package, various machine learning algorithms including random forest were trained based on the sample patients to predict patients who had nonhome discharge (to facility, nursing home, etc.). List of applied variables were then organized in order of feature importance. The algorithms were evaluated based on area under the curve of the receiver operating characteristic, accuracy, recall, and the F-1 score 
520 |a Results: Application of inclusion and exclusion criteria yielded 18,883 patients undergoing elective TSA, of whom 1813 patients had nonhome discharge. Random forest outperformed other machine learning algorithms and logistic regression based on American Society of Anesthesiologists (ASA) classification. Random forest ranked age, sex, ASA classification, and functional status as the most important variables with feature importance of 0.340, 0.130, 0.126, and 0.120, respectively. Average age of patients going to facility was 76 years, while average age of patients going home was 68 years. 78.1% of patients going to facility were women, while 52.7% of patients going home were. Among patients with nonhome discharge, 80.3% had ASA scores of 3 or 4, while patients going home had 54% of patients with ASA scores 3 or 4. 10.5% of patients going to facility were considered of partially/totally dependent functional status, whereas 1.3% of patients going home were considered partially or totally dependent (P value < .05 for all) 
520 |a Conclusion: Of various algorithms, random forest best predicted discharge destination following TSA. When using random forest to predict nonhome discharge after TSA, age, gender, ASA scores, and functional status were the most important variables. Two patient groups (home discharge, nonhome discharge) were significantly different when it came to age, gender distribution, ASA scores, and functional status 
650 4 |a Journal Article 
650 4 |a Machine Learning 
650 4 |a Random forest 
650 4 |a shoulder arthroplasty 
650 4 |a surgical outcomes 
700 1 |a Cannon, Damien  |e verfasserin  |4 aut 
700 1 |a Gulbrandsen, Matthew  |e verfasserin  |4 aut 
700 1 |a Yalamanchili, Dheeraj  |e verfasserin  |4 aut 
700 1 |a Phipatanakul, Wesley P  |e verfasserin  |4 aut 
700 1 |a Liu, Joseph  |e verfasserin  |4 aut 
700 1 |a Gowd, Anirudh  |e verfasserin  |4 aut 
700 1 |a Essilfie, Anthony  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t JSES international  |d 2020  |g 8(2024), 2 vom: 15. März, Seite 317-321  |w (DE-627)NLM307818438  |x 2666-6383  |7 nnas 
773 1 8 |g volume:8  |g year:2024  |g number:2  |g day:15  |g month:03  |g pages:317-321 
856 4 0 |u http://dx.doi.org/10.1016/j.jseint.2023.04.003  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_50 
912 |a GBV_ILN_65 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 8  |j 2024  |e 2  |b 15  |c 03  |h 317-321