Unravelling the role of tropical cyclones in shaping present species distributions

© 2024 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 30(2024), 3 vom: 20. März, Seite e17232
1. Verfasser: Thonis, Anna (VerfasserIn)
Weitere Verfasser: Stansfield, Alyssa, Akçakaya, H Resit
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Anolis MaxEnt extreme weather events random forest species distribution models tropical cyclones
LEADER 01000caa a22002652c 4500
001 NLM369524292
003 DE-627
005 20250305221355.0
007 cr uuu---uuuuu
008 240311s2024 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.17232  |2 doi 
028 5 2 |a pubmed25n1231.xml 
035 |a (DE-627)NLM369524292 
035 |a (NLM)38462701 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Thonis, Anna  |e verfasserin  |4 aut 
245 1 0 |a Unravelling the role of tropical cyclones in shaping present species distributions 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.03.2024 
500 |a Date Revised 12.03.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2024 John Wiley & Sons Ltd. 
520 |a Driven by climate change, tropical cyclones (TCs) are predicted to change in intensity and frequency through time. Given these forecasted changes, developing an understanding of how TCs impact insular wildlife is of heightened importance. Previous work has shown that extreme weather events may shape species distributions more strongly than climatic averages; however, given the coarse spatial and temporal scales at which TC data are often reported, the influence of TCs on species distributions has yet to be explored. Using TC data from the National Hurricane Center, we developed spatially and temporally explicit species distribution models (SDMs) to examine the role of TCs in shaping present-day distributions of Puerto Rico's 10 Anolis lizard species. We created six predictor variables to represent the intensity and frequency of TCs. For each occurrence of a species, we calculated these variables for TCs that came within 500 km of the center of Puerto Rico and occurred within the 1-year window prior to when that occurrence was recorded. We also included predictor variables related to landcover, climate, topography, canopy cover and geology. We used random forests to assess model performance and variable importance in models with and without TC variables. We found that the inclusion of TC variables improved model performance for the majority of Puerto Rico's 10 anole species. The magnitude of the improvement varied by species, with generalist species that occur throughout the island experiencing the greatest improvements in model performance. Range-restricted species experienced small, almost negligible, improvements but also had more predictive models both with and without the inclusion of TC variables compared to generalist species. Our findings suggest that incorporating data on TCs into SDMs may be important for modeling insular species that are prone to experiencing these types of extreme weather events 
650 4 |a Journal Article 
650 4 |a Anolis 
650 4 |a MaxEnt 
650 4 |a extreme weather events 
650 4 |a random forest 
650 4 |a species distribution models 
650 4 |a tropical cyclones 
700 1 |a Stansfield, Alyssa  |e verfasserin  |4 aut 
700 1 |a Akçakaya, H Resit  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 30(2024), 3 vom: 20. März, Seite e17232  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:3  |g day:20  |g month:03  |g pages:e17232 
856 4 0 |u http://dx.doi.org/10.1111/gcb.17232  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 3  |b 20  |c 03  |h e17232