Comprehensive Attribute Prediction Learning for Person Search by Language

Person search by language refers to searching for the interested pedestrian images given natural language sentences, which requires capturing fine-grained differences to accurately distinguish different pedestrians, while still far from being well addressed by most of the current solutions. In this...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 19., Seite 1990-2003
1. Verfasser: Niu, Kai (VerfasserIn)
Weitere Verfasser: Huang, Linjiang, Long, Yuzhou, Huang, Yan, Wang, Liang, Zhang, Yanning
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369470508
003 DE-627
005 20240319232953.0
007 cr uuu---uuuuu
008 240309s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3372832  |2 doi 
028 5 2 |a pubmed24n1336.xml 
035 |a (DE-627)NLM369470508 
035 |a (NLM)38457315 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Niu, Kai  |e verfasserin  |4 aut 
245 1 0 |a Comprehensive Attribute Prediction Learning for Person Search by Language 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 18.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Person search by language refers to searching for the interested pedestrian images given natural language sentences, which requires capturing fine-grained differences to accurately distinguish different pedestrians, while still far from being well addressed by most of the current solutions. In this paper, we propose the Comprehensive Attribute Prediction Learning (CAPL) method, which explicitly carries out attribute prediction learning, for improving the modeling capabilities of fine-grained semantic attributes and obtaining more discriminative visual and textual representations. First, we construct the semantic ATTribute Vocabulary (ATT-Vocab) based on sentence analysis. Second, the complementary context-wise and attribute-wise attribute predictions are simultaneously conducted to better model the high-frequency in-vocab attributes in our In-vocab Attribute Prediction (IAP) module. Third, to additionally consider the out-of-vocab semantics, we present the Attribute Completeness Learning (ACL) module for better capturing the low-frequency attributes outside the ATT-Vocab, obtaining more comprehensive representations. Combining the IAP and ACL modules together, our CAPL method has obtained the currently state-of-the-art retrieval performance on two widely-used benchmarks, i.e., CUHK-PEDES and ICFG-PEDES datasets. Extensive experiments and analyses have been carried out to validate the effectiveness and generalization capacities of our CAPL method 
650 4 |a Journal Article 
700 1 |a Huang, Linjiang  |e verfasserin  |4 aut 
700 1 |a Long, Yuzhou  |e verfasserin  |4 aut 
700 1 |a Huang, Yan  |e verfasserin  |4 aut 
700 1 |a Wang, Liang  |e verfasserin  |4 aut 
700 1 |a Zhang, Yanning  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 19., Seite 1990-2003  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:19  |g pages:1990-2003 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3372832  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 19  |h 1990-2003