PointCAT : Contrastive Adversarial Training for Robust Point Cloud Recognition

Notwithstanding the prominent performance shown in various applications, point cloud recognition models have often suffered from natural corruptions and adversarial perturbations. In this paper, we delve into boosting the general robustness of point cloud recognition, proposing Point-Cloud Contrasti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 07., Seite 2183-2196
1. Verfasser: Huang, Qidong (VerfasserIn)
Weitere Verfasser: Dong, Xiaoyi, Chen, Dongdong, Zhou, Hang, Zhang, Weiming, Zhang, Kui, Hua, Gang, Cheng, Yueqiang, Yu, Nenghai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM36941523X
003 DE-627
005 20250305215657.0
007 cr uuu---uuuuu
008 240308s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3372456  |2 doi 
028 5 2 |a pubmed25n1230.xml 
035 |a (DE-627)NLM36941523X 
035 |a (NLM)38451765 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Qidong  |e verfasserin  |4 aut 
245 1 0 |a PointCAT  |b Contrastive Adversarial Training for Robust Point Cloud Recognition 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Notwithstanding the prominent performance shown in various applications, point cloud recognition models have often suffered from natural corruptions and adversarial perturbations. In this paper, we delve into boosting the general robustness of point cloud recognition, proposing Point-Cloud Contrastive Adversarial Training (PointCAT). The main intuition of PointCAT is encouraging the target recognition model to narrow the decision gap between clean point clouds and corrupted point clouds by devising feature-level constraints rather than logit-level constraints. Specifically, we leverage a supervised contrastive loss to facilitate the alignment and the uniformity of hypersphere representations, and design a pair of centralizing losses with dynamic prototype guidance to prevent features from deviating outside their belonging category clusters. To generate more challenging corrupted point clouds, we adversarially train a noise generator concurrently with the recognition model from the scratch. This differs from previous adversarial training methods that utilized gradient-based attacks as the inner loop. Comprehensive experiments show that the proposed PointCAT outperforms the baseline methods, significantly enhancing the robustness of diverse point cloud recognition models under various corruptions, including isotropic point noises, the LiDAR simulated noises, random point dropping, and adversarial perturbations. Our code is available at: https://github.com/shikiw/PointCAT 
650 4 |a Journal Article 
700 1 |a Dong, Xiaoyi  |e verfasserin  |4 aut 
700 1 |a Chen, Dongdong  |e verfasserin  |4 aut 
700 1 |a Zhou, Hang  |e verfasserin  |4 aut 
700 1 |a Zhang, Weiming  |e verfasserin  |4 aut 
700 1 |a Zhang, Kui  |e verfasserin  |4 aut 
700 1 |a Hua, Gang  |e verfasserin  |4 aut 
700 1 |a Cheng, Yueqiang  |e verfasserin  |4 aut 
700 1 |a Yu, Nenghai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 07., Seite 2183-2196  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:33  |g year:2024  |g day:07  |g pages:2183-2196 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3372456  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 07  |h 2183-2196