HeadDiff : Exploring Rotation Uncertainty With Diffusion Models for Head Pose Estimation

In this paper, we propose a probabilistic regression diffusion model for head pose estimation, dubbed HeadDiff, which typically addresses the rotation uncertainty, especially when faces are captured in wild conditions. Unlike conventional image-to-pose methods which cannot explicitly establish the r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 13., Seite 1868-1882
1. Verfasser: Wang, Yaoxing (VerfasserIn)
Weitere Verfasser: Liu, Hao, Feng, Yaowei, Li, Zhendong, Wu, Xiangjuan, Zhu, Congcong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369415140
003 DE-627
005 20240313234631.0
007 cr uuu---uuuuu
008 240308s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3372457  |2 doi 
028 5 2 |a pubmed24n1326.xml 
035 |a (DE-627)NLM369415140 
035 |a (NLM)38451757 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Yaoxing  |e verfasserin  |4 aut 
245 1 0 |a HeadDiff  |b Exploring Rotation Uncertainty With Diffusion Models for Head Pose Estimation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a probabilistic regression diffusion model for head pose estimation, dubbed HeadDiff, which typically addresses the rotation uncertainty, especially when faces are captured in wild conditions. Unlike conventional image-to-pose methods which cannot explicitly establish the rotational manifold of head poses, our HeadDiff aims to ensure the pose rotation via the diffusion process and in parallel, refine the mapping process iteratively. Specifically, we initially formulate the head pose estimation problem as a reverse diffusion process, defining a paradigm for progressive denoising on the manifold, which explores the uncertainty by decomposing the large gap into intermediate steps. Moreover, our HeadDiff is equipped with an isotropic Gaussian distribution by encoding the incoherence information in our rotation representation. Finally, we learn the facial relationship of nearest neighbors with a cycle-consistent constraint for robust pose estimation versus diverse shape variations. Experimental results on multiple datasets demonstrate that our proposed method outperforms existing state-of-the-art techniques without auxiliary data 
650 4 |a Journal Article 
700 1 |a Liu, Hao  |e verfasserin  |4 aut 
700 1 |a Feng, Yaowei  |e verfasserin  |4 aut 
700 1 |a Li, Zhendong  |e verfasserin  |4 aut 
700 1 |a Wu, Xiangjuan  |e verfasserin  |4 aut 
700 1 |a Zhu, Congcong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 13., Seite 1868-1882  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:13  |g pages:1868-1882 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3372457  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 13  |h 1868-1882