Pumpkin Leaf Extract Crop Waste as a New Degradable and Environmentally Friendly Corrosion Inhibitor

The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 11 vom: 19. März, Seite 5738-5752
1. Verfasser: Ren, Haiqin (VerfasserIn)
Weitere Verfasser: Liu, Yan, Gong, Zhili, Tan, Bochuan, Deng, Hongda, Xiong, Junle, Shao, Peng, Dai, Qingwei, Cao, Jiangtao, Marzouki, Riadh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Copper 789U1901C5 Steel 12597-69-2 Plant Extracts
Beschreibung
Zusammenfassung:The pumpkin leaf was extracted by the decoction method, and it was used as an eco-friendly, nontoxic inhibitor of copper in 0.5 M H2SO4 corrosion media. To evaluate the composition and protective capacity of the pumpkin leaf extract, Fourier infrared spectroscopy, electrochemical testing, XPS, AFM, and SEM were employed. The results showed that the pumpkin leaf extract (PLE) is an effective cathode corrosion inhibitor, exhibiting exceptional protection for copper within a specific temperature range. The corrosion inhibition efficiency of the PLE against copper reached 89.98% when the concentration of the PLE reached 800 mg/L. Furthermore, when the temperature and soaking time increased, the corrosion protection efficiency of 800 mg/L PLE on copper consistently remained above 85%. Analysis of the morphology also indicated that the PLE possesses equally effective protection for copper at different temperatures. Furthermore, XPS analysis reveals that the PLE molecules are indeed adsorbed to form an adsorption film, which is consistent with Langmuir monolayer adsorption. Molecular dynamics simulations and quantum chemical calculations were conducted on the main components of the PLE
Beschreibung:Date Completed 20.03.2024
Date Revised 08.08.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03399