Insight into Multiple Intermolecular Coordination of Composite Solid Electrolytes via Cryo-Electron Microscopy for High-Voltage All-Solid-State Lithium Metal Batteries

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 23 vom: 06. Juni, Seite e2314063
1. Verfasser: Wang, Qingrong (VerfasserIn)
Weitere Verfasser: Xu, Hongli, Fan, Yanchen, Chi, Shang-Sen, Han, Bing, Ke, Ruohong, Wang, Ruo, Wang, Jun, Wang, Chaoyang, Xu, Xiaoxiong, Zheng, Zijian, Deng, Yonghong, Chang, Jian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article composite solid electrolyte cryo‐TEM intermolecular coordination lithium metal batteries solid electrolyte interphase and cathode electrolyte interphase
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
Polymer/ceramic-based composite solid electrolytes (CSE) are promising candidates for all-solid-state lithium metal batteries (SLBs), benefiting from the combined mechanical robustness of polymeric electrolytes and the high ionic conductivity of ceramic electrolytes. However, the interfacial instability and poorly understood interphases of CSE hinder their application in high-voltage SLBs. Herein, a simple but effective CSE that stabilizes high-voltage SLBs by forming multiple intermolecular coordination interactions between polyester and ceramic electrolytes is discovered. The multiple coordination between the carbonyl groups in poly(ε-caprolactone) and the fluorosulfonyl groups in anions with Li6.5La3Zr1.5Ta0.5O12 nanoparticles is directly visualized by cryogenic transmission electron microscopy and further confirmed by theoretical calculation. Importantly, the multiple coordination in CSE not only prevents the continuous decomposition of polymer skeleton by shielding the vulnerable carbonyl sites but also establishes stable inorganic-rich interphases through preferential decomposition of anions. The stable CSE and its inorganic-rich interphases enable Li||Li symmetric cells with an exceptional lifespan of over 4800 h without dendritic shorting at 0.1 mA cm-2. Moreover, the high-voltage SLB with LiNi0.5Co0.2Mn0.3O2 cathode displays excellent cycling stability over 1100 cycles at a 1C charge/discharge rate. This work reveals the underlying mechanism behind the excellent stability of coordinating composite electrolytes and interfaces in high-voltage SLBs
Beschreibung:Date Revised 07.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202314063