Toward Robust Referring Image Segmentation

Referring Image Segmentation (RIS) is a fundamental vision-language task that outputs object masks based on text descriptions. Many works have achieved considerable progress for RIS, including different fusion method designs. In this work, we explore an essential question, "What if the text des...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 07., Seite 1782-1794
1. Verfasser: Wu, Jianzong (VerfasserIn)
Weitere Verfasser: Li, Xiangtai, Li, Xia, Ding, Henghui, Tong, Yunhai, Tao, Dacheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369319206
003 DE-627
005 20240311232523.0
007 cr uuu---uuuuu
008 240306s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3371348  |2 doi 
028 5 2 |a pubmed24n1323.xml 
035 |a (DE-627)NLM369319206 
035 |a (NLM)38442064 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Jianzong  |e verfasserin  |4 aut 
245 1 0 |a Toward Robust Referring Image Segmentation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Referring Image Segmentation (RIS) is a fundamental vision-language task that outputs object masks based on text descriptions. Many works have achieved considerable progress for RIS, including different fusion method designs. In this work, we explore an essential question, "What if the text description is wrong or misleading?" For example, the described objects are not in the image. We term such a sentence as a negative sentence. However, existing solutions for RIS cannot handle such a setting. To this end, we propose a new formulation of RIS, named Robust Referring Image Segmentation (R-RIS). It considers the negative sentence inputs besides the regular positive text inputs. To facilitate this new task, we create three R-RIS datasets by augmenting existing RIS datasets with negative sentences and propose new metrics to evaluate both types of inputs in a unified manner. Furthermore, we propose a new transformer-based model, called RefSegformer, with a token-based vision and language fusion module. Our design can be easily extended to our R-RIS setting by adding extra blank tokens. Our proposed RefSegformer achieves state-of-the-art results on both RIS and R-RIS datasets, establishing a solid baseline for both settings. Our project page is at https://github.com/jianzongwu/robust-ref-seg 
650 4 |a Journal Article 
700 1 |a Li, Xiangtai  |e verfasserin  |4 aut 
700 1 |a Li, Xia  |e verfasserin  |4 aut 
700 1 |a Ding, Henghui  |e verfasserin  |4 aut 
700 1 |a Tong, Yunhai  |e verfasserin  |4 aut 
700 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 07., Seite 1782-1794  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:07  |g pages:1782-1794 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3371348  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 07  |h 1782-1794