LEVA : Using Large Language Models to Enhance Visual Analytics

Visual analytics supports data analysis tasks within complex domain problems. However, due to the richness of data types, visual designs, and interaction designs, users need to recall and process a significant amount of information when they visually analyze data. These challenges emphasize the need...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2024) vom: 04. März
1. Verfasser: Zhao, Yuheng (VerfasserIn)
Weitere Verfasser: Zhang, Yixing, Zhang, Yu, Zhao, Xinyi, Wang, Junjie, Shao, Zekai, Turkay, Cagatay, Chen, Siming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM369270010
003 DE-627
005 20240305232844.0
007 cr uuu---uuuuu
008 240305s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3368060  |2 doi 
028 5 2 |a pubmed24n1317.xml 
035 |a (DE-627)NLM369270010 
035 |a (NLM)38437130 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Yuheng  |e verfasserin  |4 aut 
245 1 0 |a LEVA  |b Using Large Language Models to Enhance Visual Analytics 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Visual analytics supports data analysis tasks within complex domain problems. However, due to the richness of data types, visual designs, and interaction designs, users need to recall and process a significant amount of information when they visually analyze data. These challenges emphasize the need for more intelligent visual analytics methods. Large language models have demonstrated the ability to interpret various forms of textual data, offering the potential to facilitate intelligent support for visual analytics. We propose LEVA, a framework that uses large language models to enhance users' VA workflows at multiple stages: onboarding, exploration, and summarization. To support onboarding, we use large language models to interpret visualization designs and view relationships based on system specifications. For exploration, we use large language models to recommend insights based on the analysis of system status and data to facilitate mixed-initiative exploration. For summarization, we present a selective reporting strategy to retrace analysis history through a stream visualization and generate insight reports with the help of large language models. We demonstrate how LEVA can be integrated into existing visual analytics systems. Two usage scenarios and a user study suggest that LEVA effectively aids users in conducting visual analytics 
650 4 |a Journal Article 
700 1 |a Zhang, Yixing  |e verfasserin  |4 aut 
700 1 |a Zhang, Yu  |e verfasserin  |4 aut 
700 1 |a Zhao, Xinyi  |e verfasserin  |4 aut 
700 1 |a Wang, Junjie  |e verfasserin  |4 aut 
700 1 |a Shao, Zekai  |e verfasserin  |4 aut 
700 1 |a Turkay, Cagatay  |e verfasserin  |4 aut 
700 1 |a Chen, Siming  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2024) vom: 04. März  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2024  |g day:04  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3368060  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2024  |b 04  |c 03