Investigating Personalization Techniques for Improved Cybersickness Prediction in Virtual Reality Environments

In recent cybersickness research, there has been a growing interest in predicting cybersickness using real-time physiological data such as heart rate, galvanic skin response, eye tracking, postural sway, and electroencephalogram. However, the impact of individual factors such as age and gender, whic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 5 vom: 16. Mai, Seite 2368-2378
1. Verfasser: Tasnim, Umama (VerfasserIn)
Weitere Verfasser: Islam, Rifatul, Desai, Kevin, Quarles, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM369269888
003 DE-627
005 20240503232343.0
007 cr uuu---uuuuu
008 240305s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3372122  |2 doi 
028 5 2 |a pubmed24n1396.xml 
035 |a (DE-627)NLM369269888 
035 |a (NLM)38437124 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tasnim, Umama  |e verfasserin  |4 aut 
245 1 0 |a Investigating Personalization Techniques for Improved Cybersickness Prediction in Virtual Reality Environments 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.04.2024 
500 |a Date Revised 03.05.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In recent cybersickness research, there has been a growing interest in predicting cybersickness using real-time physiological data such as heart rate, galvanic skin response, eye tracking, postural sway, and electroencephalogram. However, the impact of individual factors such as age and gender, which are pivotal in determining cybersickness susceptibility, remains unknown in predictive models. Our research seeks to address this gap, underscoring the necessity for a more personalized approach to cybersickness prediction to ensure a better, more inclusive virtual reality experience. We hypothesize that a personalized cybersickness prediction model would outperform non-personalized models in predicting cybersickness. Evaluating this, we explored four personalization techniques: 1) data grouping, 2) transfer learning, 3) early shaping, and 4) sample weighing using an open-source cybersickness dataset. Our empirical results indicate that personalized models significantly improve prediction accuracy. For instance, with early shaping, the Deep Temporal Convolutional Neural Network (DeepTCN) model achieved a 69.7% reduction in RMSE compared to its non-personalized version. Our study provides evidence of personalization techniques' benefits in improving cybersickness prediction. These findings have implications for developing personalized cybersickness prediction models tailored to individual differences, which can be used to develop personalized cybersickness reduction techniques in the future 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Islam, Rifatul  |e verfasserin  |4 aut 
700 1 |a Desai, Kevin  |e verfasserin  |4 aut 
700 1 |a Quarles, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 5 vom: 16. Mai, Seite 2368-2378  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:5  |g day:16  |g month:05  |g pages:2368-2378 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3372122  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 5  |b 16  |c 05  |h 2368-2378