NeRF-NQA : No-Reference Quality Assessment for Scenes Generated by NeRF and Neural View Synthesis Methods

Neural View Synthesis (NVS) has demonstrated efficacy in generating high-fidelity dense viewpoint videos using a image set with sparse views. However, existing quality assessment methods like PSNR, SSIM, and LPIPS are not tailored for the scenes with dense viewpoints synthesized by NVS and NeRF vari...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 5 vom: 24. Apr., Seite 2129-2139
1. Verfasser: Qu, Qiang (VerfasserIn)
Weitere Verfasser: Liang, Hanxue, Chen, Xiaoming, Chung, Yuk Ying, Shen, Yiran
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369269608
003 DE-627
005 20240426233822.0
007 cr uuu---uuuuu
008 240305s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2024.3372037  |2 doi 
028 5 2 |a pubmed24n1388.xml 
035 |a (DE-627)NLM369269608 
035 |a (NLM)38437095 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qu, Qiang  |e verfasserin  |4 aut 
245 1 0 |a NeRF-NQA  |b No-Reference Quality Assessment for Scenes Generated by NeRF and Neural View Synthesis Methods 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 26.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Neural View Synthesis (NVS) has demonstrated efficacy in generating high-fidelity dense viewpoint videos using a image set with sparse views. However, existing quality assessment methods like PSNR, SSIM, and LPIPS are not tailored for the scenes with dense viewpoints synthesized by NVS and NeRF variants, thus, they often fall short in capturing the perceptual quality, including spatial and angular aspects of NVS-synthesized scenes. Furthermore, the lack of dense ground truth views makes the full reference quality assessment on NVS-synthesized scenes challenging. For instance, datasets such as LLFF provide only sparse images, insufficient for complete full-reference assessments. To address the issues above, we propose NeRF-NQA, the first no-reference quality assessment method for densely-observed scenes synthesized from the NVS and NeRF variants. NeRF-NQA employs a joint quality assessment strategy, integrating both viewwise and pointwise approaches, to evaluate the quality of NVS-generated scenes. The viewwise approach assesses the spatial quality of each individual synthesized view and the overall inter-views consistency, while the pointwise approach focuses on the angular qualities of scene surface points and their compound inter-point quality. Extensive evaluations are conducted to compare NeRF-NQA with 23 mainstream visual quality assessment methods (from fields of image, video, and light-field assessment). The results demonstrate NeRF-NQA outperforms the existing assessment methods significantly and it shows substantial superiority on assessing NVS-synthesized scenes without references. An implementation of this paper are available at https://github.com/VincentQQu/NeRF-NQA 
650 4 |a Journal Article 
700 1 |a Liang, Hanxue  |e verfasserin  |4 aut 
700 1 |a Chen, Xiaoming  |e verfasserin  |4 aut 
700 1 |a Chung, Yuk Ying  |e verfasserin  |4 aut 
700 1 |a Shen, Yiran  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 5 vom: 24. Apr., Seite 2129-2139  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2024  |g number:5  |g day:24  |g month:04  |g pages:2129-2139 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2024.3372037  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 5  |b 24  |c 04  |h 2129-2139