Projection Mapping under Environmental Lighting by Replacing Room Lights with Heterogeneous Projectors

Projection mapping (PM) is a technique that enhances the appearance of real-world surfaces using projected images, enabling multiple people to view augmentations simultaneously, thereby facilitating communication and collaboration. However, PM typically requires a dark environment to achieve high-qu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 5 vom: 04. Apr., Seite 2151-2161
1. Verfasser: Takeuchi, Masaki (VerfasserIn)
Weitere Verfasser: Kusuyama, Hiroki, Iwai, Daisuke, Sato, Kosuke
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Projection mapping (PM) is a technique that enhances the appearance of real-world surfaces using projected images, enabling multiple people to view augmentations simultaneously, thereby facilitating communication and collaboration. However, PM typically requires a dark environment to achieve high-quality projections, limiting its practicality. In this paper, we overcome this limitation by replacing conventional room lighting with heterogeneous projectors. These projectors replicate environmental lighting by selectively illuminating the scene, excluding the projection target. Our contributions include a distributed projector optimization framework designed to effectively replicate environmental lighting and the incorporation of a large-aperture projector, in addition to standard projectors, to reduce high-luminance emitted rays and hard shadows-undesirable factors for collaborative tasks in PM. We conducted a series of quantitative and qualitative experiments, including user studies, to validate our approach. Our findings demonstrate t hat our projector-based lighting system significantly enhancesthe contrast and realism of PM results even under e nvironmental lighting compared to typical lights. Furthermore, our method facilitates a substantial shift in the perceived color mode from the undesirable aperture-color mode, where observers perceive the projected object as self-luminous, to the surface-color mode in PM
Beschreibung:Date Revised 19.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2024.3372031