SAAN : Similarity-Aware Attention Flow Network for Change Detection With VHR Remote Sensing Images

Change detection (CD) is a fundamental and important task for monitoring the land surface dynamics in the earth observation field. Existing deep learning-based CD methods typically extract bi-temporal image features using a weight-sharing Siamese encoder network and identify change regions using a d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 33(2024) vom: 08., Seite 2599-2613
1. Verfasser: Guo, Haonan (VerfasserIn)
Weitere Verfasser: Su, Xin, Wu, Chen, Du, Bo, Zhang, Liangpei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369174321
003 DE-627
005 20240403000344.0
007 cr uuu---uuuuu
008 240302s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2024.3349868  |2 doi 
028 5 2 |a pubmed24n1361.xml 
035 |a (DE-627)NLM369174321 
035 |a (NLM)38427550 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Guo, Haonan  |e verfasserin  |4 aut 
245 1 0 |a SAAN  |b Similarity-Aware Attention Flow Network for Change Detection With VHR Remote Sensing Images 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Change detection (CD) is a fundamental and important task for monitoring the land surface dynamics in the earth observation field. Existing deep learning-based CD methods typically extract bi-temporal image features using a weight-sharing Siamese encoder network and identify change regions using a decoder network. These CD methods, however, still perform far from satisfactorily as we observe that 1) deep encoder layers focus on irrelevant background regions; and 2) the models' confidence in the change regions is inconsistent at different decoder stages. The first problem is because deep encoder layers cannot effectively learn from imbalanced change categories using the sole output supervision, while the second problem is attributed to the lack of explicit semantic consistency preservation. To address these issues, we design a novel similarity-aware attention flow network (SAAN). SAAN incorporates a similarity-guided attention flow module with deeply supervised similarity optimization to achieve effective change detection. Specifically, we counter the first issue by explicitly guiding deep encoder layers to discover semantic relations from bi-temporal input images using deeply supervised similarity optimization. The extracted features are optimized to be semantically similar in the unchanged regions and dissimilar in the changing regions. The second drawback can be alleviated by the proposed similarity-guided attention flow module, which incorporates similarity-guided attention modules and attention flow mechanisms to guide the model to focus on discriminative channels and regions. We evaluated the effectiveness and generalization ability of the proposed method by conducting experiments on a wide range of CD tasks. The experimental results demonstrate that our method achieves excellent performance on several CD tasks, with discriminative features and semantic consistency preserved 
650 4 |a Journal Article 
700 1 |a Su, Xin  |e verfasserin  |4 aut 
700 1 |a Wu, Chen  |e verfasserin  |4 aut 
700 1 |a Du, Bo  |e verfasserin  |4 aut 
700 1 |a Zhang, Liangpei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 33(2024) vom: 08., Seite 2599-2613  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:33  |g year:2024  |g day:08  |g pages:2599-2613 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2024.3349868  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2024  |b 08  |h 2599-2613