|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM369141865 |
003 |
DE-627 |
005 |
20240608002926.0 |
007 |
cr uuu---uuuuu |
008 |
240301s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202313911
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1432.xml
|
035 |
|
|
|a (DE-627)NLM369141865
|
035 |
|
|
|a (NLM)38424290
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Guo, Xiaohan
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Touchless Thermosensation Enabled by Flexible Infrared Photothermoelectric Detector for Temperature Prewarning Function of Electronic Skin
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.06.2024
|
500 |
|
|
|a Date Revised 07.06.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2024 Wiley‐VCH GmbH.
|
520 |
|
|
|a Artificial skin, endowed with the capability to perceive thermal stimuli without physical contact, will bring innovative interactive experiences into smart robotics and augmented reality. The implementation of touchless thermosensation, responding to both hot and cold stimuli, relies on the construction of a flexible infrared detector operating in the long-wavelength infrared range to capture the spontaneous thermal radiation. This imposes rigorous requirements on the photodetection performance and mechanical flexibility of the detector. Herein, a flexible and wearable infrared detector is presented, on basis of the photothermoelectric coupling of the tellurium-based thermoelectric multilayer film and the infrared-absorbing polyimide substrate. By suppressing the optical reflection loss and aligning the destructive interference position with the absorption peak of polyimide, the fabricated thermopile detector exhibits high sensitivity to the thermal radiation over a broad source temperature range from -50 to 110 °C, even capable of resolving 0.05 °C temperature change. Spatially resolved radiation distribution sensing is also achieved by constructing an integrated thermopile array. Furthermore, an established temperature prewarning system is demonstrated for soft robotic gripper, enabling the identification of noxious thermal stimuli in a contactless manner. A feasible strategy is offered here to integrate the infrared detection technique into the sensory modality of electronic skin
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a electronic skin
|
650 |
|
4 |
|a flexible infrared detector
|
650 |
|
4 |
|a photothermoelectric effect
|
650 |
|
4 |
|a tellurium film
|
650 |
|
4 |
|a touchless thermosensation
|
650 |
|
7 |
|a Tellurium
|2 NLM
|
650 |
|
7 |
|a NQA0O090ZJ
|2 NLM
|
700 |
1 |
|
|a Lu, Xiaowei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Peng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bao, Xinhe
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 23 vom: 15. Juni, Seite e2313911
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:23
|g day:15
|g month:06
|g pages:e2313911
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202313911
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 23
|b 15
|c 06
|h e2313911
|