Nitrogen use efficiency, growth and physiological parameters in different tomato genotypes under high and low N fertilisation conditions
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 208(2024) vom: 01. März, Seite 108447 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article Biomass C:N ratio Nitrogen use efficiency Pigments Selection Solanum lycopersicum Tomato Nitrogen N762921K75 mehr... |
Zusammenfassung: | Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved. Identification of novel genotypes with enhanced nitrogen use efficiency (NUE) is a key challenge for a sustainable tomato production. In this respect, the performance of a panel of thirty tomato accessions were evaluated under high (HN; 5 mM N) and low (LN; 0.5 mM N) nitrogen irrigation solutions. For each treatment, when 50% of plants reached the first flower bud stage, plant growth and biomass traits, chlorophyll, flavonol and anthocyanin indexes, nitrogen balance index (NBI), C:N ratio in leaves, stems, and roots, and NUE were evaluated. Significant (p < 0.05) effects were observed for accession, N treatment, and their interaction across all the traits. Under LN, plants showed a delayed development (40 days for HN vs. 65 days for LN) and reduced growth and biomass. On average, LN condition led to 41.8% decrease in nitrogen uptake efficiency (NUpE) but also 189.0% increase in NUtE, resulting in 62.2% overall increase in NUE. A broad range of variation among accessions was observed under both HN and LN conditions. Under LN conditions, chlorophyll index and NBI decreased, while flavonol and anthocyanin indexes increased. Leaf C:N ratio was positively correlated with nitrogen utilisation efficiency (NUtE) in both N treatments. Multi-trait analyses identified top-performing accessions under each condition, allowing to identify one accession among top performers under both conditions. Correlation analysis revealed that high root biomass and leaf C:N ratio are useful markers for selecting high NUE accessions. These findings offer valuable insights for improving tomato NUE under varying nitrogen fertilization conditions and for breeding high-NUE cultivars |
---|---|
Beschreibung: | Date Completed 01.04.2024 Date Revised 01.04.2024 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2024.108447 |