Revisiting Realistic Test-Time Training : Sequential Inference and Adaptation by Anchored Clustering Regularized Self-Training

Deploying models on target domain data subject to distribution shift requires adaptation. Test-time training (TTT) emerges as a solution to this adaptation under a realistic scenario where access to full source domain data is not available, and instant inference on the target domain is required. Des...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 01. Juli, Seite 5524-5540
1. Verfasser: Su, Yongyi (VerfasserIn)
Weitere Verfasser: Xu, Xun, Li, Tianrui, Jia, Kui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369065352
003 DE-627
005 20240703234514.0
007 cr uuu---uuuuu
008 240229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3370963  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM369065352 
035 |a (NLM)38416608 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Yongyi  |e verfasserin  |4 aut 
245 1 0 |a Revisiting Realistic Test-Time Training  |b Sequential Inference and Adaptation by Anchored Clustering Regularized Self-Training 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deploying models on target domain data subject to distribution shift requires adaptation. Test-time training (TTT) emerges as a solution to this adaptation under a realistic scenario where access to full source domain data is not available, and instant inference on the target domain is required. Despite many efforts into TTT, there is a confusion over the experimental settings, thus leading to unfair comparisons. In this work, we first revisit TTT assumptions and categorize TTT protocols by two key factors, i.e., whether testing data is sequentially streamed and whether source model is allowed to be trained with modified loss function. Among the multiple protocols, we adopt a realistic sequential test-time training (sTTT) protocol, under which we develop a test-time anchored clustering (TTAC) approach to enable stronger test-time feature learning. TTAC discovers clusters in both source and target domains and matches the target clusters to the source ones to improve adaptation. When source domain information is strictly absent (i.e., source-free) we further develop an efficient method to infer source domain distributions for anchored clustering. Finally, self-training (ST) has demonstrated great success in learning from unlabeled data and we empirically figure out that applying ST alone to TTT is prone to confirmation bias. Therefore, a more effective TTT approach is introduced by regularizing self-training with anchored clustering, and the improved model is referred to as TTAC++. We demonstrate that, under all TTT protocols, TTAC++ consistently outperforms the state-of-the-art methods on five TTT datasets, including corrupted target domain, selected hard samples, synthetic-to-real adaptation and adversarially attacked target domain. We hope this work will provide a fair benchmarking of TTT methods, and future research should be compared within respective protocols 
650 4 |a Journal Article 
700 1 |a Xu, Xun  |e verfasserin  |4 aut 
700 1 |a Li, Tianrui  |e verfasserin  |4 aut 
700 1 |a Jia, Kui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 01. Juli, Seite 5524-5540  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:01  |g month:07  |g pages:5524-5540 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3370963  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 01  |c 07  |h 5524-5540