Thermal isomerization rates in retinal analogues using Ab-Initio molecular dynamics

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 16 vom: 15. Apr., Seite 1390-1403
1. Verfasser: Ghysbrecht, Simon (VerfasserIn)
Weitere Verfasser: Keller, Bettina G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article DFT DFTB Kramers metadynamics rate theory retinal square‐root approximation umbrella sampling
LEADER 01000caa a22002652 4500
001 NLM369041992
003 DE-627
005 20240429232031.0
007 cr uuu---uuuuu
008 240229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.27332  |2 doi 
028 5 2 |a pubmed24n1392.xml 
035 |a (DE-627)NLM369041992 
035 |a (NLM)38414274 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ghysbrecht, Simon  |e verfasserin  |4 aut 
245 1 0 |a Thermal isomerization rates in retinal analogues using Ab-Initio molecular dynamics 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC. 
520 |a For a detailed understanding of chemical processes in nature and industry, we need accurate models of chemical reactions in complex environments. While Eyring transition state theory is commonly used for modeling chemical reactions, it is most accurate for small molecules in the gas phase. A wide range of alternative rate theories exist that can better capture reactions involving complex molecules and environmental effects. However, they require that the chemical reaction is sampled by molecular dynamics simulations. This is a formidable challenge since the accessible simulation timescales are many orders of magnitude smaller than typical timescales of chemical reactions. To overcome these limitations, rare event methods involving enhanced molecular dynamics sampling are employed. In this work, thermal isomerization of retinal is studied using tight-binding density functional theory. Results from transition state theory are compared to those obtained from enhanced sampling. Rates obtained from dynamical reweighting using infrequent metadynamics simulations were in close agreement with those from transition state theory. Meanwhile, rates obtained from application of Kramers' rate equation to a sampled free energy profile along a torsional dihedral reaction coordinate were found to be up to three orders of magnitude higher. This discrepancy raises concerns about applying rate methods to one-dimensional reaction coordinates in chemical reactions 
650 4 |a Journal Article 
650 4 |a DFT 
650 4 |a DFTB 
650 4 |a Kramers 
650 4 |a metadynamics 
650 4 |a rate theory 
650 4 |a retinal 
650 4 |a square‐root approximation 
650 4 |a umbrella sampling 
700 1 |a Keller, Bettina G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 45(2024), 16 vom: 15. Apr., Seite 1390-1403  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:45  |g year:2024  |g number:16  |g day:15  |g month:04  |g pages:1390-1403 
856 4 0 |u http://dx.doi.org/10.1002/jcc.27332  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2024  |e 16  |b 15  |c 04  |h 1390-1403