Altering the substitution and cross-linking of glucuronoarabinoxylans affects cell wall architecture in Brachypodium distachyon

© 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 242(2024), 2 vom: 25. März, Seite 524-543
1. Verfasser: Tryfona, Theodora (VerfasserIn)
Weitere Verfasser: Pankratova, Yanina, Petrik, Deborah, Rebaque Moran, Diego, Wightman, Raymond, Yu, Xiaolan, Echevarría-Poza, Alberto, Deralia, Parveen Kumar, Vilaplana, Francisco, Anderson, Charles T, Hong, Mei, Dupree, Paul
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Brachypodium distachyon cell wall molecular architecture glucuronidation and feruloylation grass cell wall lignin macrofibrils xylan arabinosylation xylan cross‐linking glucuronoarabinoxylan mehr... Xylans Lignin 9005-53-2
Beschreibung
Zusammenfassung:© 2024 The Authors New Phytologist © 2024 New Phytologist Foundation.
The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials
Beschreibung:Date Completed 22.03.2024
Date Revised 22.03.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.19624