Stimuli-Responsive Nanostructured Viologen-Siloxane Materials for Controllable Conductivity
© 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 23 vom: 01. Juni, Seite e2312791 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article counterion exchange molecular self‐assembly multistate switching photoinduced electron transfer stimuli‐responsive |
Zusammenfassung: | © 2024 The Authors. Advanced Materials published by Wiley‐VCH GmbH. Spontaneous phase separation is a promising strategy for the development of novel electronic materials, as the resulting well-defined morphologies generally exhibit enhanced conductivity. Making these structures adaptive to external stimuli is challenging, yet crucial as multistate reconfigurable switching is essential for neuromorphic materials. Here, a modular and scalable approach is presented to obtain switchable phase-separated viologen-siloxane nanostructures with sub-5 nm features. The domain spacing, morphology, and conductivity of these materials can be tuned by ion exchange, repeated pulsed photoirradiation and electric stimulation. Counterion exchange triggers a postsynthetic modification in domain spacing of up to 10%. Additionally, in some cases, 2D to 1D order-order transitions are observed with the latter exhibiting a sevenfold decrease in conductivity with respect to their 2D lamellar counterparts. Moreover, the combination of the viologen core with tetraphenylborate counterions enables reversible and in situ reduction upon light irradiation. This light-driven reduction provides access to a continuum of conducting states, reminiscent of long-term potentiation. The repeated voltage sweeps improve the nanostructures alignment, leading to increased conductivity in a learning effect. Overall, these results highlight the adaptivity of phase-separated nanostructures for the next generation of organic electronics, with exciting applications in smart sensors and neuromorphic devices |
---|---|
Beschreibung: | Date Revised 07.06.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202312791 |