Applications of fluorescence spectroscopy in the investigation of plant phytochrome invivo

Copyright © 2024 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 208(2024) vom: 26. März, Seite 108434
1. Verfasser: Sineshchekov, V A (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Review Absorption Fluorescence Functions In vivo Photoreaction Phytochrome A Phytochrome B Plants mehr... Polymophism Spectroscopy Phytochrome 11121-56-5 136250-22-1 Arabidopsis Proteins
Beschreibung
Zusammenfassung:Copyright © 2024 Elsevier Masson SAS. All rights reserved.
Fluorometry is an effective research tool in biology and medicine; it is widely used in the study of the photosynthetic pigment apparatus in vivo. This method can be applied to the key plant photoreceptor phytochrome (phy). The fluorescence of phytochrome in plants was recorded for the first time in the group of the author, and a spectrofluorometric technique for its in vivo study was developed. The photophysical and photochemical properties of the pigment were described, and the photoreceptor was shown to be present in plants as two phenomenological types-active (at cryogenic temperatures) and water-soluble (Pr') and inactive and amphiphilic (Pr″). The scheme of the photoreaction explaining their photochemical distinctions was proposed. Phytochrome A was shown to comprise both types (phyA' and phyA″), whereas phytochrome B was only the second type. For phyA', distinct conformers have been detected. phyA' and phyA″ differ by the N-terminus of the molecule, possibly by serine phosphorylation. They mediate, respectively, the very low fluence and high irradiance photoresponses. Light, internal factors (kinase/phosphatase balance, pH), and hormones (jasmonate) were shown to affect the content and functions of the two phyA pools. All this points to the effectiveness of the developed method for invivo investigations of the phytochrome system. The data obtained can be applied in practical terms in agrobiology and light culture, as well as in the use of phytochrome as a new nanotool and a fluorescent probe
Beschreibung:Date Completed 01.04.2024
Date Revised 01.04.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2024.108434