External Stefan and Internal Marangoni Thermo-Fluid Dynamics for Evaporating Capillary Bridges

We probe the evaporation mechanisms of wettability-moderated, confined capillary bridges and bulges. For the first time, we explore the internal Marangoni hydrodynamics and external Stefan advection dynamics in the surrounding gaseous domain due to evaporative effects. A transient simulation approac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 40(2024), 10 vom: 12. März, Seite 5255-5269
1. Verfasser: Paul, Arnov (VerfasserIn)
Weitere Verfasser: Roy, Apurba, Dhar, Purbarun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM369020243
003 DE-627
005 20240312234005.0
007 cr uuu---uuuuu
008 240229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c03703  |2 doi 
028 5 2 |a pubmed24n1324.xml 
035 |a (DE-627)NLM369020243 
035 |a (NLM)38412068 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Paul, Arnov  |e verfasserin  |4 aut 
245 1 0 |a External Stefan and Internal Marangoni Thermo-Fluid Dynamics for Evaporating Capillary Bridges 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We probe the evaporation mechanisms of wettability-moderated, confined capillary bridges and bulges. For the first time, we explore the internal Marangoni hydrodynamics and external Stefan advection dynamics in the surrounding gaseous domain due to evaporative effects. A transient simulation approach based on the level set (LS) method and the Arbitrary Lagrangian-Eulerian (ALE) framework was adopted to computationally model the capillary bridge profiles and evaporation phenomenon with generic contact line dynamics (both CCR and CCA modes). The governing equations corresponding to the transport processes in both the liquid and gaseous domains are simulated in a fully coupled manner with appropriate boundary conditions to precisely trace the liquid-vapor interface and the three-phase contact point during evaporation. The effect of the bridge confinement phenomenon, i.e., the extent of confined ambient surrounding the liquid-vapor interface between the solid surfaces, is explored. Also, the role of wetting state and contact line dynamics during CCR and CCA modes of evaporation were probed, and good agreement with experimental observations was noted. Results show that the evaporation rate is primarily dictated by the confinement phenomenon, and wettability effects play a marginal role. A higher confinement curtails the evaporation rate due to an increased local vapor concentration around the liquid bridges. However, the wetting state substantially affects the internal Marangoni effect dynamics and the Stefan advection dynamics due to its explicit influence on the nonuniform evaporative flux along the liquid-vapor interface. Between superhydrophobic confinements, the contact lines are confined in the wedge-shaped region, thereby locally augmenting the vapor concentration. As a result, the large evaporative flux near the bulge region develops a higher temperature gradient, thereby inducing upscaled thermal Marangoni flow compared to hydrophilic confinements. These findings may have significant implications for the efficient designing and development of thermofluidic systems involving thermal transport, mixing, and deposition of dissolved particles in liquid bridges 
650 4 |a Journal Article 
700 1 |a Roy, Apurba  |e verfasserin  |4 aut 
700 1 |a Dhar, Purbarun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 40(2024), 10 vom: 12. März, Seite 5255-5269  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:10  |g day:12  |g month:03  |g pages:5255-5269 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c03703  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 10  |b 12  |c 03  |h 5255-5269