Machine learning assisted analysis of equivalent circuit usage in electrochemical impedance spectroscopy applications

© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 45(2024), 16 vom: 15. Apr., Seite 1380-1389
1. Verfasser: Klemm, Carl Philipp (VerfasserIn)
Weitere Verfasser: Frömling, Till
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article computer vision electrochemical impedance spectroscopy electrochemistry equivalent circuits machine learning
Beschreibung
Zusammenfassung:© 2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.
Electrical equivalent circuits are a widely applied tool with which electrical processes can be rationalized. There is a wide-ranging selection of fields from bioelectrochemistry to batteries to fuel cells making use of this tool. Enabling meta-analysis on the similarities and differences in the used circuits will help to identify commonly used circuits and aid in evaluating the underlying physics. We present a method and an implementation that enables the conversion of circuits included in scientific publications into a machine-readable form for generating machine learning datasets or circuit simulations
Beschreibung:Date Revised 29.04.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.27334