Separable Spatial-Temporal Residual Graph for Cloth-Changing Group Re-Identification

Group re-identification (GReID) aims to correctly associate group images belonging to the same group identity, which is a crucial task for video surveillance. Existing methods only model the member feature representations inside each image (regarded as spatial members), which leads to potential fail...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 8 vom: 22. Juli, Seite 5791-5805
1. Verfasser: Zhang, Quan (VerfasserIn)
Weitere Verfasser: Lai, Jianhuang, Xie, Xiaohua, Jin, Xiaofeng, Huang, Sien
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368838366
003 DE-627
005 20240703234508.0
007 cr uuu---uuuuu
008 240229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2024.3369483  |2 doi 
028 5 2 |a pubmed24n1459.xml 
035 |a (DE-627)NLM368838366 
035 |a (NLM)38393853 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Quan  |e verfasserin  |4 aut 
245 1 0 |a Separable Spatial-Temporal Residual Graph for Cloth-Changing Group Re-Identification 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.07.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Group re-identification (GReID) aims to correctly associate group images belonging to the same group identity, which is a crucial task for video surveillance. Existing methods only model the member feature representations inside each image (regarded as spatial members), which leads to potential failures in long-term video surveillance due to cloth-changing behaviors. Therefore, we focus on a new task called cloth-changing group re-identification (CCGReID), which needs to consider group relationship modeling in GReID and robust group representation against cloth-changing members. In this paper, we propose the separable spatial-temporal residual graph (SSRG) for CCGReID. Unlike existing GReID methods, SSRG considers both spatial members inside each group image and temporal members among multiple group images with the same identity. Specifically, SSRG constructs full graphs for each group identity within the batched data, which will be completely and non-redundantly separated into the spatial member graph (SMG) and temporal member graph (TMG). SMG aims to extract group features from spatial members, and TMG improves the robustness of the cloth-changing members by feature propagation. The separability enables SSRG to be available in the inference rather than only assisting supervised training. The residual guarantees efficient SSRG learning for SMG and TMG. To expedite research in CCGReID, we develop two datasets, including GroupPRCC and GroupVC, based on the existing CCReID datasets. The experimental results show that SSRG achieves state-of-the-art performance, including the best accuracy and low degradation (only 2.15% on GroupVC). Moreover, SSRG can be well generalized to the GReID task. As a weakly supervised method, SSRG surpasses the performance of some supervised methods and even approaches the best performance on the CSG dataset 
650 4 |a Journal Article 
700 1 |a Lai, Jianhuang  |e verfasserin  |4 aut 
700 1 |a Xie, Xiaohua  |e verfasserin  |4 aut 
700 1 |a Jin, Xiaofeng  |e verfasserin  |4 aut 
700 1 |a Huang, Sien  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 8 vom: 22. Juli, Seite 5791-5805  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:8  |g day:22  |g month:07  |g pages:5791-5805 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2024.3369483  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 8  |b 22  |c 07  |h 5791-5805