Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 31(2024), Pt 2 vom: 01. März, Seite 420-429
1. Verfasser: Karaca, Adnan Sahin (VerfasserIn)
Weitere Verfasser: Bostanci, Erkan, Ketenoglu, Didem, Harder, Manuel, Canbay, Ali Can, Ketenoglu, Bora, Eren, Engin, Aydin, Ayhan, Yin, Zhong, Guzel, Mehmet Serdar, Martins, Michael
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article Be compound refractive lenses KB mirrors evolutionary algorithms multi-objective optimization swarm intelligence synchrotron beamlines
LEADER 01000caa a22002652 4500
001 NLM368765687
003 DE-627
005 20240307232414.0
007 cr uuu---uuuuu
008 240229s2024 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577524000717  |2 doi 
028 5 2 |a pubmed24n1319.xml 
035 |a (DE-627)NLM368765687 
035 |a (NLM)38386563 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Karaca, Adnan Sahin  |e verfasserin  |4 aut 
245 1 0 |a Optimization of synchrotron radiation parameters using swarm intelligence and evolutionary algorithms 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a open access. 
520 |a Alignment of each optical element at a synchrotron beamline takes days, even weeks, for each experiment costing valuable beam time. Evolutionary algorithms (EAs), efficient heuristic search methods based on Darwinian evolution, can be utilized for multi-objective optimization problems in different application areas. In this study, the flux and spot size of a synchrotron beam are optimized for two different experimental setups including optical elements such as lenses and mirrors. Calculations were carried out with the X-ray Tracer beamline simulator using swarm intelligence (SI) algorithms and for comparison the same setups were optimized with EAs. The EAs and SI algorithms used in this study for two different experimental setups are the Genetic Algorithm (GA), Non-dominated Sorting Genetic Algorithm II (NSGA-II), Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). While one of the algorithms optimizes the lens position, the other focuses on optimizing the focal distances of Kirkpatrick-Baez mirrors. First, mono-objective evolutionary algorithms were used and the spot size or flux values checked separately. After comparison of mono-objective algorithms, the multi-objective evolutionary algorithm NSGA-II was run for both objectives - minimum spot size and maximum flux. Every algorithm configuration was run several times for Monte Carlo simulations since these processes generate random solutions and the simulator also produces solutions that are stochastic. The results show that the PSO algorithm gives the best values over all setups 
650 4 |a Journal Article 
650 4 |a Be compound refractive lenses 
650 4 |a KB mirrors 
650 4 |a evolutionary algorithms 
650 4 |a multi-objective optimization 
650 4 |a swarm intelligence 
650 4 |a synchrotron beamlines 
700 1 |a Bostanci, Erkan  |e verfasserin  |4 aut 
700 1 |a Ketenoglu, Didem  |e verfasserin  |4 aut 
700 1 |a Harder, Manuel  |e verfasserin  |4 aut 
700 1 |a Canbay, Ali Can  |e verfasserin  |4 aut 
700 1 |a Ketenoglu, Bora  |e verfasserin  |4 aut 
700 1 |a Eren, Engin  |e verfasserin  |4 aut 
700 1 |a Aydin, Ayhan  |e verfasserin  |4 aut 
700 1 |a Yin, Zhong  |e verfasserin  |4 aut 
700 1 |a Guzel, Mehmet Serdar  |e verfasserin  |4 aut 
700 1 |a Martins, Michael  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 31(2024), Pt 2 vom: 01. März, Seite 420-429  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:31  |g year:2024  |g number:Pt 2  |g day:01  |g month:03  |g pages:420-429 
856 4 0 |u http://dx.doi.org/10.1107/S1600577524000717  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 31  |j 2024  |e Pt 2  |b 01  |c 03  |h 420-429