Sensor-based characterization of construction and demolition waste at high occupancy densities using synthetic training data and deep learning

Sensor-based monitoring of construction and demolition waste (CDW) streams plays an important role in recycling (RC). Extracted knowledge about the composition of a material stream helps identifying RC paths, optimizing processing plants and form the basis for sorting. To enable economical use, it i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 42(2024), 9 vom: 01. Sept., Seite 788-796
1. Verfasser: Kronenwett, Felix (VerfasserIn)
Weitere Verfasser: Maier, Georg, Leiss, Norbert, Gruna, Robin, Thome, Volker, Längle, Thomas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Machine learning circular economy construction and demolition waste object detection sensor-based sorting synthetic data
LEADER 01000caa a22002652 4500
001 NLM368754472
003 DE-627
005 20240904232604.0
007 cr uuu---uuuuu
008 240222s2024 xx |||||o 00| ||eng c
024 7 |a 10.1177/0734242X241231410  |2 doi 
028 5 2 |a pubmed24n1523.xml 
035 |a (DE-627)NLM368754472 
035 |a (NLM)38385439 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kronenwett, Felix  |e verfasserin  |4 aut 
245 1 0 |a Sensor-based characterization of construction and demolition waste at high occupancy densities using synthetic training data and deep learning 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.09.2024 
500 |a Date Revised 04.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Sensor-based monitoring of construction and demolition waste (CDW) streams plays an important role in recycling (RC). Extracted knowledge about the composition of a material stream helps identifying RC paths, optimizing processing plants and form the basis for sorting. To enable economical use, it is necessary to ensure robust detection of individual objects even with high material throughput. Conventional algorithms struggle with resulting high occupancy densities and object overlap, making deep learning object detection methods more promising. In this study, different deep learning architectures for object detection (Region-based CNN/Region-based Convolutional Neural Network (Faster R-CNN), You only look once (YOLOv3), Single Shot MultiBox Detector (SSD)) are investigated with respect to their suitability for CDW characterization. A mixture of brick and sand-lime brick is considered as an exemplary waste stream. Particular attention is paid to detection performance with increasing occupancy density and particle overlap. A method for the generation of synthetic training images is presented, which avoids time-consuming manual labelling. By testing the models trained on synthetic data on real images, the success of the method is demonstrated. Requirements for synthetic training data composition, potential improvements and simplifications of different architecture approaches are discussed based on the characteristic of the detection task. In addition, the required inference time of the presented models is investigated to ensure their suitability for use under real-time conditions 
650 4 |a Journal Article 
650 4 |a Machine learning 
650 4 |a circular economy 
650 4 |a construction and demolition waste 
650 4 |a object detection 
650 4 |a sensor-based sorting 
650 4 |a synthetic data 
700 1 |a Maier, Georg  |e verfasserin  |4 aut 
700 1 |a Leiss, Norbert  |e verfasserin  |4 aut 
700 1 |a Gruna, Robin  |e verfasserin  |4 aut 
700 1 |a Thome, Volker  |e verfasserin  |4 aut 
700 1 |a Längle, Thomas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA  |d 1991  |g 42(2024), 9 vom: 01. Sept., Seite 788-796  |w (DE-627)NLM098164791  |x 1096-3669  |7 nnns 
773 1 8 |g volume:42  |g year:2024  |g number:9  |g day:01  |g month:09  |g pages:788-796 
856 4 0 |u http://dx.doi.org/10.1177/0734242X241231410  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2024  |e 9  |b 01  |c 09  |h 788-796