Self-Catalyzed Synthesis of Length-Controlled One-Dimensional Nickel OxideN-Doped Porous Carbon Nanostructures from Metal Ion Modified Nitrogen Heterocycles for Efficient Lithium Storage

Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cyc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 40(2024), 9 vom: 05. März, Seite 4852-4859
1. Verfasser: Chen, Ming (VerfasserIn)
Weitere Verfasser: Zhao, Ming-Yang, Liu, Feng-Ming, Li, Meng-Ting, Zhang, Meng-Lei, Qian, Xing, Yuan, Zhong-Yong, Li, Chun-Sheng, Wan, Rong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Transition metal oxides with the merits of high theoretical capacities, natural abundance, low cost, and environmental benignity have been regarded as a promising anodic material for lithium ion batteries (LIBs). However, the severe volume expansion upon cycling and poor conductivity limit their cycling stability and rate capability. To address this issue, NiO embedded and N-doped porous carbon nanorods (NiONCNR) and nanotubes (NiO@NCNT) are synthesized by the metal-catalyzed graphitization and nitridization of monocrystalline Ni(II)-triazole coordinated framework and Ni(II)/melamine mixture, respectively, and the following oxidation in air. When applied as an anodic material for LIBs, the NiO@NCNR and NiO@NCNT hybrids exhibit a decent capacity of 895/832 mA h g-1 at 100 mA g-1, high rate capability of 484/467 mA h g-1 at 5.0 A g-1, and good long-term cycling stability of 663/634 mA h g-1 at 600th cycle at 1 A g-1, which are much better than those of NiO@carbon black (CB) control sample (701, 214, and 223 mA h g-1). The remarkable electrochemical properties benefit from the advanced nanoarchitecture of NiO@NCNR and NiO@NCNT, which offers a length-controlled one-dimensional porous carbon nanoarchitecture for effective e-/Li+ transport, affords a flexible carbon skeleton for spatial confinement, and forms abundant nanocavities for stress buffering and structure reinforcement during discharge/charging processes. The rational structural design and synthesis may pave a way for exploring advanced metal oxide based anodic materials for next-generation LIBs
Beschreibung:Date Revised 05.03.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c03742