The Electron Migration Polarization Boosting Electromagnetic Wave Absorption Based on Ce Atoms Modulated yolk@shell FexN@NGC

© 2024 Wiley‐VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 23 vom: 07. Juni, Seite e2314233
1. Verfasser: Ma, Zhenhui (VerfasserIn)
Weitere Verfasser: Yang, Ke, Li, Da, Liu, Hu, Hui, Shengchong, Jiang, Yuying, Li, Siyuan, Li, Yiming, Yang, Wang, Wu, Hongjing, Hou, Yanglong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Ce single‐atoms FexN@NGC electromagnetic wave absorption electron migration polarization
Beschreibung
Zusammenfassung:© 2024 Wiley‐VCH GmbH.
The electron migration polarization is considered as a promising approach to optimize electromagnetic waves (EMW) dissipation. However, it is still difficult to realize well-controlled electron migration and elucidate the related EMW loss mechanisms for current researches. Herein, a novel FexNNGC/Ce system to construct an effective electron migration model based on the electron leaps among the 4f/5d/6s orbitals of Ce ions is explored. In Fe4N@NGC/CeSA+Cs+NPs, Ce single-atoms (SA) mainly represent a +3 valence state, which can feed the electrons to Ce4+ of clusters (Cs) and CeO2 nanoparticles (NPs) through a conductive network under EMW, leading to the electron migration polarization. Such electron migration loss combined with excellent magnetic loss provided by Fe4N core, results in the optimal EMW attenuation performance with a minimum reflection loss exceeds -85.1 dB and a broadened absorption bandwidth up to 7.5 GHz at 1.5 mm. This study clarifies the in-depth relationship between electron migration polarization and EMW dissipation, providing profound insights into developing well-coordinated magnetic-dielectric nanocomposites for EMW absorption engineering
Beschreibung:Date Revised 07.06.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202314233