Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability

The existence of an air layer reduces friction drag on superhydrophobic surfaces. Therefore, improving the air layer stability of superhydrophobic surfaces holds immense significance in reducing both energy consumption and environmental pollution caused by friction drag. Based on the properties of m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 40(2024), 9 vom: 05. März, Seite 4940-4952
1. Verfasser: Qiao, Shuai (VerfasserIn)
Weitere Verfasser: Cai, Chujiang, Pan, Chong, Liu, Yanpeng, Zhang, Qingfu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM368684601
003 DE-627
005 20240305232431.0
007 cr uuu---uuuuu
008 240222s2024 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c03929  |2 doi 
028 5 2 |a pubmed24n1317.xml 
035 |a (DE-627)NLM368684601 
035 |a (NLM)38378438 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiao, Shuai  |e verfasserin  |4 aut 
245 1 0 |a Study on the Performance of a Surface with Coupled Wettability Difference and Convex-Stripe Array for Improved Air Layer Stability 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The existence of an air layer reduces friction drag on superhydrophobic surfaces. Therefore, improving the air layer stability of superhydrophobic surfaces holds immense significance in reducing both energy consumption and environmental pollution caused by friction drag. Based on the properties of mathematical discretization and the contact angle hysteresis generated by the wettability difference, a surface coupled with a wettability difference treatment and a convex-stripe array is developed by laser engraving and fluorine modification, and its performance in improving the air layer stability is experimentally studied in a von Kármán swirling flow field. The results show that the destabilization of the air layer is mainly caused by the Kelvin-Helmholtz instability, which is triggered by the density difference between gas and liquid, as well as the tangential velocity difference between gas and liquid. When the air layer is relatively thin, tangential wave destabilization occurs, whereas for larger thicknesses, the destabilization mode is coupled wave destabilization. The maximum Reynolds number that keeps the air layer fully covering the surface of the rotating disk (with drag reduction performance) during the disk rotation process is defined as the critical Reynolds number (Rec), which is 1.62 × 105 for the uniform superhydrophobic surface and 3.24 × 105 for the superhydrophobic surface with a convex stripe on the outermost ring (SCSSP). Individual treatments of wettability difference and a convex-stripe array on the SCSSP further improve the air layer stability, but Rec remains at 3.24 × 105. Finally, the coupling of the wettability difference treatment with a convex-stripe array significantly improves the air layer stability, resulting in an increase of Rec to 4.05 × 105, and the drag reduction rate stably maintained around 30% 
650 4 |a Journal Article 
700 1 |a Cai, Chujiang  |e verfasserin  |4 aut 
700 1 |a Pan, Chong  |e verfasserin  |4 aut 
700 1 |a Liu, Yanpeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Qingfu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 40(2024), 9 vom: 05. März, Seite 4940-4952  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:40  |g year:2024  |g number:9  |g day:05  |g month:03  |g pages:4940-4952 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c03929  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 40  |j 2024  |e 9  |b 05  |c 03  |h 4940-4952